Antisense oligonucleotide therapeutic approach for Timothy syndrome

Xiaoyu Chen, Fikri Birey, Min Yin Li, Omer Revah, Rebecca Levy, Mayuri Vijay Thete, Noah Reis, Konstantin Kaganovsky, Massimo Onesto, Noriaki Sakai, Zuzana Hudacova, Jin Hao, Xiangling Meng, Seiji Nishino, John Huguenard, Sergiu P. Pașca

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Timothy syndrome (TS) is a severe, multisystem disorder characterized by autism, epilepsy, long-QT syndrome and other neuropsychiatric conditions1. TS type 1 (TS1) is caused by a gain-of-function variant in the alternatively spliced and developmentally enriched CACNA1C exon 8A, as opposed to its counterpart exon 8. We previously uncovered several phenotypes in neurons derived from patients with TS1, including delayed channel inactivation, prolonged depolarization-induced calcium rise, impaired interneuron migration, activity-dependent dendrite retraction and an unanticipated persistent expression of exon 8A2–6. We reasoned that switching CACNA1C exon utilization from 8A to 8 would represent a potential therapeutic strategy. Here we developed antisense oligonucleotides (ASOs) to effectively decrease the inclusion of exon 8A in human cells both in vitro and, following transplantation, in vivo. We discovered that the ASO-mediated switch from exon 8A to 8 robustly rescued defects in patient-derived cortical organoids and migration in forebrain assembloids. Leveraging a transplantation platform previously developed7, we found that a single intrathecal ASO administration rescued calcium changes and in vivo dendrite retraction of patient neurons, suggesting that suppression of CACNA1C exon 8A expression is a potential treatment for TS1. Broadly, these experiments illustrate how a multilevel, in vivo and in vitro stem cell model-based approach can identify strategies to reverse disease-relevant neural pathophysiology.

Original languageEnglish
Pages (from-to)818-825
Number of pages8
JournalNature
Volume628
Issue number8009
DOIs
StatePublished - 25 Apr 2024
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Antisense oligonucleotide therapeutic approach for Timothy syndrome'. Together they form a unique fingerprint.

Cite this