TY - GEN
T1 - Anytime focal search with applications
AU - Cohen, Liron
AU - Greco, Matias
AU - Ma, Hang
AU - Hernandez, Carlos
AU - Felner, Ariel
AU - Satish Kumar, T. K.
AU - Koenig, Sven
N1 - Publisher Copyright:
© 2018 International Joint Conferences on Artificial Intelligence. All right reserved.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Focal search (FS) is a bounded-suboptimal search (BSS) variant of A*. Like A*, it uses an open list whose states are sorted in increasing order of their f-values. Unlike A*, it also uses a focal list containing all states from the open list whose f-values are no larger than a suboptimality factor times the smallest f-value in the open list. In this paper, we develop an anytime version of FS, called anytime FS (AFS), that is useful when deliberation time is limited. AFS finds a “good” solution quickly and refines it to better and better solutions if time allows. It does this refinement efficiently by reusing previous search efforts. On the theoretical side, we show that AFS is bounded suboptimal and that anytime potential search (ATPS/ANA*), a state-of-the-art anytime bounded-cost search (BCS) variant of A*, is a special case of AFS. In doing so, we bridge the gap between anytime search algorithms based on BSS and BCS. We also identify different properties of priority functions, used to sort the focal list, that may allow for efficient reuse of previous search efforts. On the experimental side, we demonstrate the usefulness of AFS for solving hard combinatorial problems, such as the generalized covering traveling salesman problem and the multi-agent pathfinding problem.
AB - Focal search (FS) is a bounded-suboptimal search (BSS) variant of A*. Like A*, it uses an open list whose states are sorted in increasing order of their f-values. Unlike A*, it also uses a focal list containing all states from the open list whose f-values are no larger than a suboptimality factor times the smallest f-value in the open list. In this paper, we develop an anytime version of FS, called anytime FS (AFS), that is useful when deliberation time is limited. AFS finds a “good” solution quickly and refines it to better and better solutions if time allows. It does this refinement efficiently by reusing previous search efforts. On the theoretical side, we show that AFS is bounded suboptimal and that anytime potential search (ATPS/ANA*), a state-of-the-art anytime bounded-cost search (BCS) variant of A*, is a special case of AFS. In doing so, we bridge the gap between anytime search algorithms based on BSS and BCS. We also identify different properties of priority functions, used to sort the focal list, that may allow for efficient reuse of previous search efforts. On the experimental side, we demonstrate the usefulness of AFS for solving hard combinatorial problems, such as the generalized covering traveling salesman problem and the multi-agent pathfinding problem.
UR - http://www.scopus.com/inward/record.url?scp=85055698099&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2018/199
DO - 10.24963/ijcai.2018/199
M3 - Conference contribution
AN - SCOPUS:85055698099
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1434
EP - 1441
BT - Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
A2 - Lang, Jerome
PB - International Joint Conferences on Artificial Intelligence
T2 - 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Y2 - 13 July 2018 through 19 July 2018
ER -