Abstract
Production of high fidelity spatial audio applications requires individual head-related transfer functions (HRTFs). As the acquisition of HRTF is an elaborate process, interest lies in interpolating full length HRTF from sparse samples. Ear-alignment is a recently developed pre-processing technique, shown to reduce an HRTF's spherical harmonics order, thus permitting sparse sampling over fewer directions. This paper describes the application of two methods for ear-aligned HRTF interpolation by sparse sampling: Orthogonal Matching Pursuit and Principal Component Analysis. These methods consist of generating unique vector sets for HRTF representation. The methods were tested over an HRTF dataset, indicating that interpolation errors using small sampling schemes may be further reduced by up to 5 dB in comparison with spherical harmonics interpolation.
Original language | English |
---|---|
Pages (from-to) | 446-450 |
Number of pages | 5 |
Journal | Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing |
Volume | 2021-June |
DOIs | |
State | Published - 1 Jan 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: 6 Jun 2021 → 11 Jun 2021 |
Keywords
- Head-related transfer functions (HRTFs)
- Orthogonal matching pursuit
- Principal component analysis
- Spatial audio
- Spherical-harmonics
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering