APPROACHES TOWARD PHYSICAL AND GENERAL VIDEO ANOMALY DETECTION

Laura Kart, Niv Cohen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In recent years, many works have addressed the problem of finding never-seen-before anomalies in videos. Yet, most work has been focused on detecting anomalous frames in surveillance videos taken from security cameras. Meanwhile, the task of anomaly detection (AD) in videos exhibiting anomalous mechanical behavior, has been mostly overlooked. Anomaly detection in such videos is both of academic and practical interest, as they may enable automatic detection of malfunctions in many manufacturing, maintenance, and real-life settings. To assess the potential of the different approaches to detect such anomalies, we evaluate two simple baseline approaches: (i) Temporal-pooled image AD techniques. (ii) Density estimation of videos represented with features pretrained for video-classification. Development of such methods calls for new benchmarks to allow evaluation of different possible approaches. We introduce the Physical Anomalous Trajectory or Motion (PHANTOM) dataset, which contains six different video classes. Each class consists of normal and anomalous videos. The classes differ in the presented phenomena, the normal class variability, and the kind of anomalies in the videos. We also suggest an even harder benchmark where anomalous activities should be spotted on highly variable scenes.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers
Pages1785-1789
Number of pages5
ISBN (Electronic)9781665405409
DOIs
StatePublished - 1 Jan 2022
Externally publishedYes
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: 23 May 202227 May 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period23/05/2227/05/22

Keywords

  • Anomaly Detection
  • Video Anomaly Detection

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'APPROACHES TOWARD PHYSICAL AND GENERAL VIDEO ANOMALY DETECTION'. Together they form a unique fingerprint.

Cite this