Approximate counting of K-paths: Deterministic and in polynomial space

Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations


A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)km∊2)-time exponential-space algorithm to approximately compute the number of paths on k vertices in a graph G up to a multiplicative error of 1 ± ∊. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010] gave a deterministic exponential-space algorithm with running time (2e)k+O(log3 k)m log n whenever ∊1 = kO(1). Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing randomization. Specifically, they gave a randomized O(4km∊2)-time exponential-space algorithm. In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their work, and with a novel twist, obtain the following results. We present a deterministic 4k+O(√k(log2 k+log2 ∊−1))m log n-time polynomial-space algorithm. This matches the running time of the best known deterministic polynomial-space algorithm for deciding whether a given graph G has a path on k vertices. Additionally, we present a randomized 4k+O(log k(log k+log ∊1))m log n-time polynomial-space algorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very simple; we only make elementary use of the probabilistic method. Thus, the algorithm by Brand et al. runs in time 4k+o(k)m whenever ∊1 = 2o(k), while our deterministic and randomized algorithms run in time 4k+o(k)m log n whenever ∊1 = 2o(k 4 ) and 1 ∊1 = 2o(log k k ), respectively. Prior to our work, no 2O(k)nO(1)-time polynomial-space algorithm was known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence it immediately extends to approximate counting of graphs of bounded treewidth; in comparison, Brand et al. note that their approach is limited to graphs of bounded pathwidth.

Original languageEnglish
Title of host publication46th International Colloquium on Automata, Languages, and Programming, ICALP 2019
EditorsChristel Baier, Ioannis Chatzigiannakis, Paola Flocchini, Stefano Leonardi
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771092
StatePublished - 1 Jul 2019
Event46th International Colloquium on Automata, Languages, and Programming, ICALP 2019 - Patras, Greece
Duration: 9 Jul 201912 Jul 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
ISSN (Print)1868-8969


Conference46th International Colloquium on Automata, Languages, and Programming, ICALP 2019


  • Approximate counting
  • K-Path
  • Parameterized complexity

ASJC Scopus subject areas

  • Software


Dive into the research topics of 'Approximate counting of K-paths: Deterministic and in polynomial space'. Together they form a unique fingerprint.

Cite this