TY - GEN
T1 - Approximate nearest neighbor for curves - simple, efficient, and deterministic
AU - Filtser, Arnold
AU - Filtser, Omrit
AU - Katz, Matthew J.
N1 - Publisher Copyright:
© Arnold Filtser, Omrit Filtser, and Matthew J. Katz; licensed under Creative Commons License CC-BY 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
PY - 2020/6/1
Y1 - 2020/6/1
N2 - In the (1 + ε, r)-approximate near-neighbor problem for curves (ANNC) under some similarity measure δ, the goal is to construct a data structure for a given set C of curves that supports approximate near-neighbor queries: Given a query curve Q, if there exists a curve C ∈ C such that δ(Q, C) ≤ r, then return a curve C0 ∈ C with δ(Q, C0) ≤ (1 + ε)r. There exists an efficient reduction from the (1 + ε)-approximate nearest-neighbor problem to ANNC, where in the former problem the answer to a query is a curve C ∈ C with δ(Q, C) ≤ (1 + ε) · δ(Q, C∗), where C∗ is the curve of C most similar to Q. Given a set C of n curves, each consisting of m points in d dimensions, we construct a data structure for ANNC that uses n · O(1ε )md storage space and has O(md) query time (for a query curve of length m), where the similarity measure between two curves is their discrete Fréchet or dynamic time warping distance. Our method is simple to implement, deterministic, and results in an exponential improvement in both query time and storage space compared to all previous bounds. Further, we also consider the asymmetric version of ANNC, where the length of the query curves is k m, and obtain essentially the same storage and query bounds as above, except that m is replaced by k. Finally, we apply our method to a version of approximate range counting for curves and achieve similar bounds.
AB - In the (1 + ε, r)-approximate near-neighbor problem for curves (ANNC) under some similarity measure δ, the goal is to construct a data structure for a given set C of curves that supports approximate near-neighbor queries: Given a query curve Q, if there exists a curve C ∈ C such that δ(Q, C) ≤ r, then return a curve C0 ∈ C with δ(Q, C0) ≤ (1 + ε)r. There exists an efficient reduction from the (1 + ε)-approximate nearest-neighbor problem to ANNC, where in the former problem the answer to a query is a curve C ∈ C with δ(Q, C) ≤ (1 + ε) · δ(Q, C∗), where C∗ is the curve of C most similar to Q. Given a set C of n curves, each consisting of m points in d dimensions, we construct a data structure for ANNC that uses n · O(1ε )md storage space and has O(md) query time (for a query curve of length m), where the similarity measure between two curves is their discrete Fréchet or dynamic time warping distance. Our method is simple to implement, deterministic, and results in an exponential improvement in both query time and storage space compared to all previous bounds. Further, we also consider the asymmetric version of ANNC, where the length of the query curves is k m, and obtain essentially the same storage and query bounds as above, except that m is replaced by k. Finally, we apply our method to a version of approximate range counting for curves and achieve similar bounds.
KW - (asymmetric) approximate nearest neighbor
KW - Approximation algorithms
KW - Dynamic time warping
KW - Fréchet distance
KW - Polygonal curves
KW - Range counting
UR - http://www.scopus.com/inward/record.url?scp=85089352175&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2020.48
DO - 10.4230/LIPIcs.ICALP.2020.48
M3 - Conference contribution
AN - SCOPUS:85089352175
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
A2 - Czumaj, Artur
A2 - Dawar, Anuj
A2 - Merelli, Emanuela
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020
Y2 - 8 July 2020 through 11 July 2020
ER -