TY - GEN
T1 - Approximation algorithms for label cover and the log-density threshold
AU - Chlamtáč, Eden
AU - Manurangsi, Pasin
AU - Moshkovitz, Dana
AU - Vijayaraghavan, Aravindan
N1 - Publisher Copyright:
Copyright © by SIAM.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Many known optimal NP-hardness of approximation results are reductions from a problem called Label- Cover. The input is a bipartite graph G = (L,R,E) and each edge e = (x, y) 2 E carries a projection π e that maps labels to x to labels to y. The objective is to find a labeling of the vertices that satisfies as many of the projections as possible. It is believed that the best approximation ratio efficiently achievable for Label-Cover is of the form N-c where N = nk, n is the number of vertices, k is the number of labels, and 0 < c < 1 is some constant. Inspired by a framework originally developed for Densest k-Subgraph, we propose a "log density threshold" for the approximability of Label-Cover. Specifically, we suggest the possibility that the Label-Cover approximation problem undergoes a computational phase transition at the same threshold at which local algorithms for its random counterpart fail. This threshold is N3-2p2 N-0.17. We then design, for any 0, a polynomial-time approximation algorithm for semirandom Label-Cover whose approximation ratio is N3-2p2+. In our semi-random model, the input graph is random (or even just expanding), and the projections on the edges are arbitrary. For worst-case Label-Cover we show a polynomial- time algorithm whose approximation ratio is roughly N-0.233. The previous best efficient approximation ratio was N-0.25. We present some evidence towards an N-c threshold by constructing integrality gaps for N(1) rounds of the Sum-of-squares/Lasserre hierarchy of the natural relaxation of Label Cover. For general 2CSP the "log density threshold" is N-0.25, and we give a polynomial-time algorithm in the semi-random model whose approximation ratio is N-0.25+ for any > 0.
AB - Many known optimal NP-hardness of approximation results are reductions from a problem called Label- Cover. The input is a bipartite graph G = (L,R,E) and each edge e = (x, y) 2 E carries a projection π e that maps labels to x to labels to y. The objective is to find a labeling of the vertices that satisfies as many of the projections as possible. It is believed that the best approximation ratio efficiently achievable for Label-Cover is of the form N-c where N = nk, n is the number of vertices, k is the number of labels, and 0 < c < 1 is some constant. Inspired by a framework originally developed for Densest k-Subgraph, we propose a "log density threshold" for the approximability of Label-Cover. Specifically, we suggest the possibility that the Label-Cover approximation problem undergoes a computational phase transition at the same threshold at which local algorithms for its random counterpart fail. This threshold is N3-2p2 N-0.17. We then design, for any 0, a polynomial-time approximation algorithm for semirandom Label-Cover whose approximation ratio is N3-2p2+. In our semi-random model, the input graph is random (or even just expanding), and the projections on the edges are arbitrary. For worst-case Label-Cover we show a polynomial- time algorithm whose approximation ratio is roughly N-0.233. The previous best efficient approximation ratio was N-0.25. We present some evidence towards an N-c threshold by constructing integrality gaps for N(1) rounds of the Sum-of-squares/Lasserre hierarchy of the natural relaxation of Label Cover. For general 2CSP the "log density threshold" is N-0.25, and we give a polynomial-time algorithm in the semi-random model whose approximation ratio is N-0.25+ for any > 0.
UR - http://www.scopus.com/inward/record.url?scp=85016199453&partnerID=8YFLogxK
U2 - 10.1137/1.9781611974782.57
DO - 10.1137/1.9781611974782.57
M3 - Conference contribution
AN - SCOPUS:85016199453
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 900
EP - 919
BT - 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
A2 - Klein, Philip N.
PB - Association for Computing Machinery
T2 - 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
Y2 - 16 January 2017 through 19 January 2017
ER -