TY - JOUR
T1 - Arachidonic acid is important for efficient use of light by the microalga Lobosphaera incisa under chilling stress
AU - Zorin, Boris
AU - Pal-Nath, Dipasmita
AU - Lukyanov, Alexandr
AU - Smolskaya, Sviatlana
AU - Kolusheva, Sofiya
AU - Didi-Cohen, Shoshana
AU - Boussiba, Sammy
AU - Cohen, Zvi
AU - Khozin-Goldberg, Inna
AU - Solovchenko, Alexei
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - The oleaginous microalga Lobosphaera incisa (Trebouxiophyceae, Chlorophyta) contains arachidonic acid (ARA, 20:4 n − 6) in all membrane glycerolipids and in the storage lipid triacylglycerol. The optimal growth temperature of the wild-type (WT) strain is 25 °C; chilling temperatures (≤ 15 °C) slow its growth. This effect is more pronounced in the delta-5-desaturase ARA-deficient mutant P127, in which ARA is replaced with dihomo-γ-linolenic acid (DGLA, 20:3 n − 6). In nutrient-replete cells grown at 25 °C, the major chloroplast lipid monogalactosylglycerol (MGDG) was dominated by C18/C16 species in both strains. Yet ARA constituted over 10% of the total fatty acids in the WT MGDG as a component of C20/C18 and C20/C20 species, whereas DGLA was only a minor component of MGDG in P127. Both strains increased the percentage of 18:3 n − 3 in membrane lipids under chilling temperatures. The temperature downshift led to a dramatic increase in triacylglycerol at the expense of chloroplast lipids. WT and P127 showed a similarly high photochemical quantum yield of photosystem II, whereas non-photochemical quenching (NPQ) and violaxanthin de-epoxidation were drastically higher in P127, especially at 15 °C. Fluorescence anisotropy measurements indicated that ARA-containing MGDG might contribute to sustaining chloroplast membrane fluidity upon dropping to the chilling temperature. We hypothesize that conformational changes in chloroplast membranes and increased rigidity of the ARA-deficient MGDG of P127 at chilling temperatures are not compensated by trienoic fatty acids. This might ‘lock’ violaxanthin de-epoxidase in the activated state causing high constitutive NPQ and alleviate the risk of photodamage under chilling conditions in the mutant.
AB - The oleaginous microalga Lobosphaera incisa (Trebouxiophyceae, Chlorophyta) contains arachidonic acid (ARA, 20:4 n − 6) in all membrane glycerolipids and in the storage lipid triacylglycerol. The optimal growth temperature of the wild-type (WT) strain is 25 °C; chilling temperatures (≤ 15 °C) slow its growth. This effect is more pronounced in the delta-5-desaturase ARA-deficient mutant P127, in which ARA is replaced with dihomo-γ-linolenic acid (DGLA, 20:3 n − 6). In nutrient-replete cells grown at 25 °C, the major chloroplast lipid monogalactosylglycerol (MGDG) was dominated by C18/C16 species in both strains. Yet ARA constituted over 10% of the total fatty acids in the WT MGDG as a component of C20/C18 and C20/C20 species, whereas DGLA was only a minor component of MGDG in P127. Both strains increased the percentage of 18:3 n − 3 in membrane lipids under chilling temperatures. The temperature downshift led to a dramatic increase in triacylglycerol at the expense of chloroplast lipids. WT and P127 showed a similarly high photochemical quantum yield of photosystem II, whereas non-photochemical quenching (NPQ) and violaxanthin de-epoxidation were drastically higher in P127, especially at 15 °C. Fluorescence anisotropy measurements indicated that ARA-containing MGDG might contribute to sustaining chloroplast membrane fluidity upon dropping to the chilling temperature. We hypothesize that conformational changes in chloroplast membranes and increased rigidity of the ARA-deficient MGDG of P127 at chilling temperatures are not compensated by trienoic fatty acids. This might ‘lock’ violaxanthin de-epoxidase in the activated state causing high constitutive NPQ and alleviate the risk of photodamage under chilling conditions in the mutant.
KW - Chilling stress
KW - Dihomo-γ-linolenic acid
KW - Glycerolipid
KW - Long-chain polyunsaturated fatty acid
KW - Membrane fluidity
KW - Non-photochemical quenching
UR - http://www.scopus.com/inward/record.url?scp=85020014332&partnerID=8YFLogxK
U2 - 10.1016/j.bbalip.2017.04.008
DO - 10.1016/j.bbalip.2017.04.008
M3 - Article
C2 - 28504210
AN - SCOPUS:85020014332
SN - 1388-1981
VL - 1862
SP - 853
EP - 868
JO - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
JF - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
IS - 9
ER -