Are cell jamming and unjamming essential in tissue development?

Lior Atia, Jeffrey J. Fredberg, Nir S. Gov, Adrian F. Pegoraro

Research output: Contribution to journalReview articlepeer-review

6 Scopus citations

Abstract

The last decade has seen a surge of evidence supporting the existence of the transition of the multicellular tissue from a collective material phase that is regarded as being jammed to a collective material phase that is regarded as being unjammed. The jammed phase is solid-like and effectively ‘frozen’, and therefore is associated with tissue homeostasis, rigidity, and mechanical stability. The unjammed phase, by contrast, is fluid-like and effectively ‘melted’, and therefore is associated with mechanical fluidity, plasticity and malleability that are required in dynamic multicellular processes that sculpt organ microstructure. Such multicellular sculpturing, for example, occurs during embryogenesis, growth and remodeling. Although unjamming and jamming events in the multicellular collective are reminiscent of those that occur in the inert granular collective, such as grain in a hopper that can flow or clog, the analogy is instructive but limited, and the implications for cell biology remain unclear. Here we ask, are the cellular jamming transition and its inverse ––the unjamming transition–– mere epiphenomena? That is, are they dispensable downstream events that accompany but neither cause nor quench these core multicellular processes? Drawing from selected examples in developmental biology, here we suggest the hypothesis that, to the contrary, the graded departure from a jammed phase enables controlled degrees of malleability as might be required in developmental dynamics. We further suggest that the coordinated approach to a jammed phase progressively slows those dynamics and ultimately enables long-term mechanical stability as might be required in the mature homeostatic multicellular tissue.

Original languageEnglish
Article number203727
JournalCells and Development
Volume168
DOIs
StatePublished - 1 Dec 2021

Keywords

  • Fluidity
  • Jamming
  • Migration
  • Phase transition
  • Plasticity percolation
  • Remodeling
  • Rigidity
  • Unjamming

ASJC Scopus subject areas

  • Developmental Biology
  • Medicine (all)

Fingerprint

Dive into the research topics of 'Are cell jamming and unjamming essential in tissue development?'. Together they form a unique fingerprint.

Cite this