TY - JOUR
T1 - Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements
AU - Kloog, Itai
AU - Koutrakis, Petros
AU - Coull, Brent A.
AU - Lee, Hyung Joo
AU - Schwartz, Joel
N1 - Funding Information:
Supported by the Harvard Environmental Protection Agency (EPA) Center Grant RD83479801 , NIH grant ES012044 and the Environment and Health Fund (EHF) Israel. The authors also want to thank Dr. William L Ridgway, Science Systems and Applications, Inc. Climate and Radiation Branch, Code 613.2, NASA Goddard Space Flight Center, Greenbelt, MD 20771 and Steven J. Melly, department of environmental health, Harvard school of public health, Harvard University.
PY - 2011/11/1
Y1 - 2011/11/1
N2 - Land use regression (LUR) models provide good estimates of spatially resolved long-term exposures, but are poor at capturing short term exposures. Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide spatio-temporally resolved predictions of both long and short term exposures, but previous studies have generally showed relatively low predictive power. Our objective was to extend our previous work on day-specific calibrations of AOD data using ground PM2.5 measurements by incorporating commonly used LUR variables and meteorological variables, thus benefiting from both the spatial resolution from the LUR models and the spatio-temporal resolution from the satellite models. Later we use spatial smoothing to predict PM2.5 concentrations for day/locations with missing AOD measures. We used mixed models with random slopes for day to calibrate AOD data for 2000-2008 across New-England with monitored PM2.5 measurements. We then used a generalized additive mixed model with spatial smoothing to estimate PM2.5 in location-day pairs with missing AOD, using regional measured PM2.5, AOD values in neighboring cells, and land use. Finally, local (100 m) land use terms were used to model the difference between grid cell prediction and monitored value to capture very local traffic particles. Out-of-sample ten-fold cross-validation was used to quantify the accuracy of our predictions. For days with available AOD data we found high out-of-sample R2 (mean out-of-sample R2 = 0.830, year to year variation 0.725-0.904). For days without AOD values, our model performance was also excellent (mean out-of-sample R2 = 0.810, year to year variation 0.692-0.887). Importantly, these R2 are for daily, rather than monthly or yearly, values. Our model allows one to assess short term and long-term human exposures in order to investigate both the acute and chronic effects of ambient particles, respectively.
AB - Land use regression (LUR) models provide good estimates of spatially resolved long-term exposures, but are poor at capturing short term exposures. Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide spatio-temporally resolved predictions of both long and short term exposures, but previous studies have generally showed relatively low predictive power. Our objective was to extend our previous work on day-specific calibrations of AOD data using ground PM2.5 measurements by incorporating commonly used LUR variables and meteorological variables, thus benefiting from both the spatial resolution from the LUR models and the spatio-temporal resolution from the satellite models. Later we use spatial smoothing to predict PM2.5 concentrations for day/locations with missing AOD measures. We used mixed models with random slopes for day to calibrate AOD data for 2000-2008 across New-England with monitored PM2.5 measurements. We then used a generalized additive mixed model with spatial smoothing to estimate PM2.5 in location-day pairs with missing AOD, using regional measured PM2.5, AOD values in neighboring cells, and land use. Finally, local (100 m) land use terms were used to model the difference between grid cell prediction and monitored value to capture very local traffic particles. Out-of-sample ten-fold cross-validation was used to quantify the accuracy of our predictions. For days with available AOD data we found high out-of-sample R2 (mean out-of-sample R2 = 0.830, year to year variation 0.725-0.904). For days without AOD values, our model performance was also excellent (mean out-of-sample R2 = 0.810, year to year variation 0.692-0.887). Importantly, these R2 are for daily, rather than monthly or yearly, values. Our model allows one to assess short term and long-term human exposures in order to investigate both the acute and chronic effects of ambient particles, respectively.
KW - Aerosol optical depth
KW - Air pollution
KW - Epidemiology
KW - Exposure error
KW - PM
UR - http://www.scopus.com/inward/record.url?scp=80052963749&partnerID=8YFLogxK
U2 - 10.1016/j.atmosenv.2011.08.066
DO - 10.1016/j.atmosenv.2011.08.066
M3 - Article
AN - SCOPUS:80052963749
SN - 1352-2310
VL - 45
SP - 6267
EP - 6275
JO - Atmospheric Environment
JF - Atmospheric Environment
IS - 35
ER -