Atlas of classifiers for brain MRI segmentation

Boris Kodner, Shiri Gordon, Jacob Goldberger, Tammy Riklin Raviv

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

We present a conceptually novel framework for brain tissue segmentation based on an Atlas of Classifiers (AoC). The AoC allows a statistical summary of the annotated datasets taking into account both the imaging data and the corresponding labels. It is therefore more informative than the classical probabilistic atlas and more economical than the popular multi-atlas approaches, which require large memory consumption and high computational complexity for each segmentation. Specifically, we consider an AoC as a spatial map of voxel-wise multinomial logistic regression (LR) functions learned from the labeled data. Upon convergence, the resulting fixed LR weights (a few for each voxel) represent the training dataset, which might be huge. Segmentation of a new image is therefore immediate and only requires the calculation of the LR outputs based on the respective voxel-wise features. Moreover, the AoC construction is independent of the test images, providing the flexibility to train it on the available labeled data and use it for the segmentation of images from different datasets and modalities. The proposed method has been applied to publicly available datasets for the segmentation of brain MRI tissues and is shown to outreach commonly used methods. Promising results were obtained also for multi-modal, cross-modality MRI segmentation.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Proceedings
EditorsYinghuan Shi, Heung-Il Suk, Kenji Suzuki, Qian Wang
PublisherSpringer Verlag
Pages36-44
Number of pages9
ISBN (Print)9783319673882
DOIs
StatePublished - 1 Jan 2017
Event8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 10 Sep 201710 Sep 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10541 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017 held in conjunction with the 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period10/09/1710/09/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science (all)

Fingerprint

Dive into the research topics of 'Atlas of classifiers for brain MRI segmentation'. Together they form a unique fingerprint.

Cite this