TY - JOUR
T1 - Atmospheric oxidation of selected chlorinated alkenes by O3, OH, NO3 and Cl
AU - Zhang, Qun
AU - Chen, Yi
AU - Tong, Shengrui
AU - Ge, Maofa
AU - Shenolikar, Justin
AU - Johnson, Matthew S.
AU - Wang, Yifeng
AU - Tsona, Narcisse T.
AU - Mellouki, Abdelwahid
AU - Du, Lin
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017/1/1
Y1 - 2017/1/1
N2 - An experimental study on the 3-chloro-2-methyl-1-propene (CMP), 2,3-dichloropropene (DCP) and 3,4-dichlorobutene (DCB) reactions with atmospheric oxidants at (298 ± 1) K and atmospheric pressure is reported. Rate constants for the gas phase reactions of the three chlorinated alkenes with O3, OH and NO3 radicals and Cl atom were determined in a 100 L Teflon reactor by gas chromatography with flame ionization detector (GC-FID). The obtained rate constants are (3.03 ± 0.15) × 10−18, (3.83 ± 1.30) × 10−11, (1.99 ± 0.19) × 10−14, and (2.40 ± 0.41) × 10−10 cm3 molecule−1 s−1 for CMP reactions with O3, OH, NO3, and Cl, respectively, (4.62 ± 1.41) × 10−20, (1.37 ± 1.02) × 10−11, (1.45 ± 0.15) × 10−15 and (1.30 ± 0.99) × 10−11 cm3 molecule−1 s−1 for DCP reactions and (2.09 ± 0.24) × 10−19, (1.45 ± 0.59) × 10−11, (3.00 ± 0.82) × 10−16 and (1.91 ± 0.19) × 10−10 cm3 molecule−1 s−1 for DCB reactions. The CMP reaction products were detected and possible reaction mechanisms of their formation were proposed. Chloroacetone was found to be the major product in all four oxidation reactions. The loss process of CMP in the atmosphere is mostly controlled by its reaction with the OH radical during daytime and with NO3 during nighttime, with lifetimes of 3.6 h and 27.9 h respectively. Atmospheric implications of both these reactions and their potential products are discussed.
AB - An experimental study on the 3-chloro-2-methyl-1-propene (CMP), 2,3-dichloropropene (DCP) and 3,4-dichlorobutene (DCB) reactions with atmospheric oxidants at (298 ± 1) K and atmospheric pressure is reported. Rate constants for the gas phase reactions of the three chlorinated alkenes with O3, OH and NO3 radicals and Cl atom were determined in a 100 L Teflon reactor by gas chromatography with flame ionization detector (GC-FID). The obtained rate constants are (3.03 ± 0.15) × 10−18, (3.83 ± 1.30) × 10−11, (1.99 ± 0.19) × 10−14, and (2.40 ± 0.41) × 10−10 cm3 molecule−1 s−1 for CMP reactions with O3, OH, NO3, and Cl, respectively, (4.62 ± 1.41) × 10−20, (1.37 ± 1.02) × 10−11, (1.45 ± 0.15) × 10−15 and (1.30 ± 0.99) × 10−11 cm3 molecule−1 s−1 for DCP reactions and (2.09 ± 0.24) × 10−19, (1.45 ± 0.59) × 10−11, (3.00 ± 0.82) × 10−16 and (1.91 ± 0.19) × 10−10 cm3 molecule−1 s−1 for DCB reactions. The CMP reaction products were detected and possible reaction mechanisms of their formation were proposed. Chloroacetone was found to be the major product in all four oxidation reactions. The loss process of CMP in the atmosphere is mostly controlled by its reaction with the OH radical during daytime and with NO3 during nighttime, with lifetimes of 3.6 h and 27.9 h respectively. Atmospheric implications of both these reactions and their potential products are discussed.
KW - Chlorinated alkene
KW - Gas chromatography
KW - Kinetics
KW - Rate constant
KW - Reaction mechanism
UR - http://www.scopus.com/inward/record.url?scp=85030148897&partnerID=8YFLogxK
U2 - 10.1016/j.atmosenv.2017.09.031
DO - 10.1016/j.atmosenv.2017.09.031
M3 - Article
AN - SCOPUS:85030148897
SN - 1352-2310
VL - 170
SP - 12
EP - 21
JO - Atmospheric Environment
JF - Atmospheric Environment
ER -