Abstract
Carbon-supported single metal atoms coordinated to nitrogen have recently emerged as efficient electrocatalysts for the electrochemical CO2 reduction reaction (CO2RR) to CO; although the presence of aggregated metallic species can decrease Faradaic efficiency, catalyst utilization and promote the hydrogen evolution reaction. In this work, we employ our recent synthetic protocol for producing single and dual Fe atoms in a high surface area C2N-derived nitrogen-doped carbon and test the catalysts for CO2 reduction. The higher resolution of the X-ray absorption spectroscopy that we employed herein, relative to our previous report, allowed us to more accurately pinpoint the dominant site as pentacoordinated Fe single atoms. The material displays high active site utilization of 25.1 ± 1.2% (based on in situ nitrite stripping experiments). Additionally, a Faradaic efficiency of 98% for the CO2RR to CO was obtained, with a turnover frequency of 2.5 e− site−1 s−1, at -0.56 V vs a reversible hydrogen electrode (RHE); on par with state-of-the-art Au catalysts.
Original language | English |
---|---|
Article number | 142855 |
Journal | Electrochimica Acta |
Volume | 463 |
DOIs | |
State | Published - 20 Sep 2023 |
Externally published | Yes |
Keywords
- Electrochemical CO Reduction
- Metal nitrogen carbon
- Single atom catalysts
ASJC Scopus subject areas
- General Chemical Engineering
- Electrochemistry