Abstract
Mutations in the common gamma chain of the interleukin 2 receptor (IL2RG) or the associated downstream signaling enzyme Janus kinase 3 (JAK3) genes are typically characterized by a T cell-negative, B cell-positive, natural killer (NK) cell-negative (T−B+NK−) severe combined immunodeficiency (SCID) immune phenotype. We report clinical course, immunological, genetic and proteomic work-up of two patients with different novel mutations in the IL-2-JAK3 pathway with a rare atypical presentation of T−B+NK− SCID. Lymphocyte subpopulation revealed significant T cells lymphopenia, normal B cells, and NK cells counts (T−B+NK+SCID). Despite the presence of B cells, IgG levels were low and IgA and IgM levels were undetectable. T-cell proliferation in response to mitogens in patient 1 was very low and T-cell receptor V-beta chain repertoire in patient 2 was polyclonal. Whole-exome sequencing revealed novel mutations in both patients (patient 1—c.923delC frame-shift mutation in the IL2RG gene, patient 2—c.G172A a homozygous missense mutation in the JAK3 gene). Bioinformatic analysis of the JAK3 mutation indicated deleterious effect and 3D protein modeling located the mutation to a surface exposed alpha-helix structure. Our findings help to link between genotype and phenotype, which is a key factor for the diagnosis and treatment of SCID patients.
Original language | English |
---|---|
Pages (from-to) | 326-334 |
Number of pages | 9 |
Journal | Genes and Immunity |
Volume | 21 |
Issue number | 5 |
DOIs | |
State | Published - 1 Nov 2020 |
Externally published | Yes |
ASJC Scopus subject areas
- Immunology
- Genetics
- Genetics(clinical)