TY - JOUR
T1 - Autoinducer N-(3-oxododecanoyl)-L-homoserine lactone induces calcium and reactive oxygen species-mediated mitochondrial damage and apoptosis in blood platelets
AU - Yadav, Vivek Kumar
AU - Singh, Pradeep Kumar
AU - Sharma, Deepmala
AU - Pandey, Himanshu
AU - Singh, Sunil Kumar
AU - Agarwal, Vishnu
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/5/1
Y1 - 2021/5/1
N2 - Acylated homoserine lactones (AHL) such as N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and N-butyryl-L-homoserine lactone (C4 HSL) are the most common autoinducer molecules in Pseudomonas aeruginosa. These AHL molecules not only regulate the expression of virulence factors but also have been shown to interfere with the host cell and modulate its functions. Recently, we reported that 3-oxo-C12 HSL but not C4 HSL causes cytosolic Ca2+ rise and ROS production in platelets. In this study, we examined the potential of AHLs to induce apoptosis in the human blood platelet. Our result showed that 3-oxo-C12 HSL but not C4 HSL causes phosphatidylserine (PS) exposure, mitochondrial dysfunction (mitochondrial transmembrane potential loss, and mitochondrial permeability transition pore (mPTP) formation). Besides, 3-oxo-C12 HSL also inhibited thrombin-induced platelet aggregation and clot retraction. The pretreatment of an intracellular calcium chelator BAPTA-AM or ROS inhibitor (DPI) significantly attenuated the 3-oxo-C12 HSL induced apoptotic characters such as PS exposure and mitochondrial dysfunctions. These data, including our previous findings, confirmed that 3-oxo-C12 HSL induced intracellular Ca2+ mediated ROS production results in the activation and subsequent induction of apoptotic features in platelets. Our results demonstrated that the 3-oxo-C12 HSL modulates the functions of platelets that may cause severe thrombotic complications in P. aeruginosa infected individuals.
AB - Acylated homoserine lactones (AHL) such as N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and N-butyryl-L-homoserine lactone (C4 HSL) are the most common autoinducer molecules in Pseudomonas aeruginosa. These AHL molecules not only regulate the expression of virulence factors but also have been shown to interfere with the host cell and modulate its functions. Recently, we reported that 3-oxo-C12 HSL but not C4 HSL causes cytosolic Ca2+ rise and ROS production in platelets. In this study, we examined the potential of AHLs to induce apoptosis in the human blood platelet. Our result showed that 3-oxo-C12 HSL but not C4 HSL causes phosphatidylserine (PS) exposure, mitochondrial dysfunction (mitochondrial transmembrane potential loss, and mitochondrial permeability transition pore (mPTP) formation). Besides, 3-oxo-C12 HSL also inhibited thrombin-induced platelet aggregation and clot retraction. The pretreatment of an intracellular calcium chelator BAPTA-AM or ROS inhibitor (DPI) significantly attenuated the 3-oxo-C12 HSL induced apoptotic characters such as PS exposure and mitochondrial dysfunctions. These data, including our previous findings, confirmed that 3-oxo-C12 HSL induced intracellular Ca2+ mediated ROS production results in the activation and subsequent induction of apoptotic features in platelets. Our results demonstrated that the 3-oxo-C12 HSL modulates the functions of platelets that may cause severe thrombotic complications in P. aeruginosa infected individuals.
KW - Acyl-homoserine lactones
KW - Apoptosis
KW - Platelet
KW - Pseudomonas aeruginosa
UR - http://www.scopus.com/inward/record.url?scp=85101839048&partnerID=8YFLogxK
U2 - 10.1016/j.micpath.2021.104792
DO - 10.1016/j.micpath.2021.104792
M3 - Article
C2 - 33636321
AN - SCOPUS:85101839048
SN - 0882-4010
VL - 154
JO - Microbial Pathogenesis
JF - Microbial Pathogenesis
M1 - 104792
ER -