@inproceedings{00f3f2d825324492a757fdc298557449,
title = "Automated Process Mining and Learning of Therapeutic Actions in the Intensive Care Unit",
abstract = "In this study, we implemented a hybrid approach, incorporating temporal data mining, machine learning, and process mining for modeling and predicting the course of treatment of Intensive Care Unit (ICU) patients. We used process mining algorithms to construct models of management of ICU patients. Then, we extracted the decision points from the mined models and used temporal data mining of the periods preceding the decision points to create temporal-pattern features. We trained classifiers to predict the next actions expected for each point. The methodology was evaluated on medical ICU data from the hypokalemia and hypoglycemia domains. The study's contributions include the representation of medical treatment trajectories of ICU patients using process models, and the integration of Temporal Data Mining and Machine Learning with Process Mining, to predict the next therapeutic actions in the ICU.",
keywords = "Process mining, temporal data mining",
author = "Anna Romanov and Yuval Shahar",
note = "Publisher Copyright: {\textcopyright} 2024 International Medical Informatics Association (IMIA) and IOS Press.; 19th World Congress on Medical and Health Informatics, MedInfo 2023 ; Conference date: 08-07-2023 Through 12-07-2023",
year = "2024",
month = jan,
day = "25",
doi = "10.3233/SHTI231080",
language = "English",
series = "Studies in Health Technology and Informatics",
publisher = "IOS Press BV",
pages = "825--829",
editor = "Jen Bichel-Findlay and Paula Otero and Philip Scott and Elaine Huesing",
booktitle = "MEDINFO 2023 - The Future is Accessible",
address = "Netherlands",
}