Automatic reconstruction of tree skeletal structures from point clouds

Yotam Livny, Feilong Yan, Matt Olson, Baoquan Chen, Hao Zhang, Jihad El-Sana

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

230 Scopus citations

Abstract

Trees, bushes, and other plants are ubiquitous in urban environments, and realistic models of trees can add a great deal of realism to a digital urban scene. There has been much research on modeling tree structures, but limited work on reconstructing the geometry of real-world trees - even then, most works have focused on reconstruction from photographs aided by significant user interaction. In this paper, we perform active laser scanning of real-world vegetation and present an automatic approach that robustly reconstructs skeletal structures of trees, from which full geometry can be generated. The core of our method is a series of global optimizations that fit skeletal structures to the often sparse, incomplete, and noisy point data. A significant benefit of our approach is its ability to reconstruct multiple overlapping trees simultaneously without segmentation. We demonstrate the effectiveness and robustness of our approach on many raw scans of different tree varieties.

Original languageEnglish
Title of host publicationProceedings of ACM SIGGRAPH Asia 2010, SIGGRAPH Asia 2010
Volume29
Edition6
DOIs
StatePublished - 1 Dec 2010
EventACM SIGGRAPH Asia 2010, SIGGRAPH Asia 2010 - Seoul, Korea, Republic of
Duration: 15 Dec 201018 Dec 2010

Conference

ConferenceACM SIGGRAPH Asia 2010, SIGGRAPH Asia 2010
Country/TerritoryKorea, Republic of
CitySeoul
Period15/12/1018/12/10

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Automatic reconstruction of tree skeletal structures from point clouds'. Together they form a unique fingerprint.

Cite this