Backstreaming Pickup Ions

Michael Gedalin, Nikolai V. Pogorelov, Vadim Roytershteyn

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Ions that are reflected at the shock front and escape back into the upstream region can play the role of ions that start to be accelerated by a diffusive shock acceleration mechanism. Backstreaming ions have been shown to be generated from a superthermal tail of the solar wind at sufficiently high upstream temperatures. The number of such ions was found to be low and they were not found at shock angles exceeding 50. The mechanism of production is multiple reflection when an ion changes the direction of motion inside the ramp for the first time, due to the cross-shock potential. Since pickup ions (PUIs) constitute a strongly superthermal population of protons a substantially stronger production of backstreaming PUIs can be expected. We study the reflection of PUIs in a planar stationary shock front using test particle analysis. The used model is inspired by the observed profile of the termination shock. The influence of magnetic compression, the shock angle, and the overshoot are analyzed. It is found that generation of backstreaming PUIs in this shock is substantially more efficient than the generation of backstreaming protons from thermal solar wind. The fraction of backstreaming PUIs rapidly increases with the increase of magnetic compression and the decrease of the shock angle. Overshoot enhances production of backstreaming PUIs and allows it for larger shock angles. No backstreaming ions have been found for shock angles larger than 60. The results of the test particle analysis are supported by full-particle simulations.

Original languageEnglish
Article number107
JournalAstrophysical Journal
Volume910
Issue number2
DOIs
StatePublished - 1 Apr 2021

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Backstreaming Pickup Ions'. Together they form a unique fingerprint.

Cite this