Abstract
Basil (Ocimum basilicum) was cultivated in northern Germany in three different hydroponic components: grow pipes, a raft, and an ebb-and-flood gravel substrate. The nutrients originated from the intensive production of African catfish (Clarias gariepinus) with 140 fish/m3 under decoupled aquaponic conditions. After 41 days, plants were significantly taller in the gravel components (101.8 ± 8.3 cm), followed by the grow pipes (96.7 ± 7.0 cm), and the raft (94.8 ± 8.6 cm) components (gravel > grow pipes = raft). The leaf number was high and not significantly different between the grow pipes (518.0 ± 81.4), gravel (515.1 ± 133.0), and raft components (493.7 ± 124.8; grow pipes = raft = gravel). Basil in the grow-pipe subsystems developed rapid root growth and clogged the pipes with heterogeneous plant growth. Basil production in northern Germany in grow-pipe, raft, and gravel hydro-components is possible by using effluents from intensive C. gariepinus aquaculture without additional fertilizer in the plant grow-out phase. Further research should focus on optimizing grow pipes by maintaining an optimal root–water contact area, as well as on new technologies such as aquaponics (s.l.) gardening.
Original language | English |
---|---|
Article number | 8745 |
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Sustainability |
Volume | 12 |
Issue number | 20 |
DOIs | |
State | Published - 2 Oct 2020 |
Keywords
- African catfish
- Aquaponics
- Basil
- Deep water culture
- Floating raft
- Gravel substrate
- Grow pipes
- Hydroponics
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Building and Construction
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Hardware and Architecture
- Computer Networks and Communications
- Management, Monitoring, Policy and Law