Abstract
Background-Tumor necrosis factor-á and other proinflammatory cytokines activate the canonical Nuclear Factor (NF)-κB pathway through the kinase IKKâ. Previously, we established that IKKβ is also critical for Akt-mediated NF-κB activation in ventricular myocytes. Akt activates the kinase mammalian target of rapamycin (mTOR), which mediates important processes such as cardiac hypertrophy. However, whether mTOR regulates cardiac myocyte cell survival is unknown. Methods and Results-Herein, we demonstrate bidirectional regulation between NF-êB signaling and mTOR, the balance which determines ventricular myocyte survival. Overexpression of IKKâ resulted in mTOR activation and conversely overexpression of mTOR lead to NF-êB activation. Loss of function approaches demonstrated that endogenous levels of IKKâ and mTOR also signal through this pathway. NF-κB activation by mTOR was mediated by phosphorylation of the NF-κB p65 subunit increasing p65 nuclear translocation and activation of gene transcription. This circuit was also important for NF-êB activation by the canonical tumor necrosis factor-α pathway. Our previous work has shown that NF-κB signaling suppresses transcription of the death gene Bnip3 resulting in ventricular myocyte survival. Inhibition of mTOR with rapamycin decreased NF-κB activation resulting in increased Bnip3 expression and cell death. Conversely, mTOR overexpression suppressed Bnip3 levels and cell death of ventricular myocytes in response to hypoxia. Conclusions-To our knowledge, these data provide the first evidence for a bidirectional link between NF-κB signaling and mTOR that is critical in the regulation of Bnip3 expression and cardiac myocyte death. Hence, modulation of this axis may be cardioprotective during ischemia.
Original language | English |
---|---|
Pages (from-to) | 335-343 |
Number of pages | 9 |
Journal | Circulation: Heart Failure |
Volume | 6 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jan 2013 |
Externally published | Yes |
Keywords
- Bnip3
- Cell death
- Hypoxia
- Mtor
- NF-κB
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine