Binomial coefficient predictors

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

For a prime p and nonnegative integers n, k, consider the set A(p) n,k = {x ∈ [0, 1,..., n]: pk{Pipe}{Pipe}(n x)}. Let the expansion of n + 1 in base p be n + 1 = α0pν + α1pν-1 + · · · + αν, where 0 ≤ αi ≤ p - 1, i = 0,..., ν. Then n is called a binomial coefficient predictor in base p(p-BCP), if {Pipe}A(p) n,k{Pipe} = αkpν-k, k = 0, 1,..., ν. We give a full description of the p-BCP's in every base p.

Original languageEnglish
Pages (from-to)1-8
Number of pages8
JournalJournal of Integer Sequences
Volume14
Issue number2
StatePublished - 30 May 2011

Keywords

  • Binomial coefficient
  • Kummer's theorem
  • Maximal exponent of a prime dividing an integer
  • P-ary expansion of integer

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'Binomial coefficient predictors'. Together they form a unique fingerprint.

Cite this