TY - JOUR
T1 - Biodegradation of labile dissolved organic carbon under losing and gaining streamflow conditions simulated in a laboratory flume
AU - De Falco, Natalie
AU - Boano, Fulvio
AU - Arnon, Shai
N1 - Publisher Copyright:
© 2016 Association for the Sciences of Limnology and Oceanography
PY - 2016/9/1
Y1 - 2016/9/1
N2 - Carbon in surface waters is widely recognized as a key element that influences nutrient cycling, metal availability, and water quality. Its degradation in streams occurs primarily by benthic microbial communities that colonize the underlying sediment, which is commonly termed the hyporheic zone (HZ). The biodegradation of a labile dissolved organic carbon (DOCL), exemplified by sodium benzoate, was studied in a novel laboratory flume system under a combination of different overlying water velocities, losing or gaining fluxes, and biofilm distribution (“surficial” or “homogeneous distribution”). The overall objective of this study was to evaluate the effect of different flow conditions on DOCL biodegradation in the HZ. The results showed that overlying velocity was the dominant factor affecting DOCL biodegradation, regardless of biofilm distribution. Gaining flow conditions also induced a slight increase in the biodegradation rates as compared to losing or neutral flow conditions, due to additional oxygen input from the upwelling water. The aerobic reactive zone under all flow conditions was limited to the upper section of the benthic biofilm (several millimeters), where the surficial biofilm showed the highest activity. Our results demonstrate the processes affecting DOCL biodegradation in the hyporheic zone and will help to implement future modeling of DOC transport in streams.
AB - Carbon in surface waters is widely recognized as a key element that influences nutrient cycling, metal availability, and water quality. Its degradation in streams occurs primarily by benthic microbial communities that colonize the underlying sediment, which is commonly termed the hyporheic zone (HZ). The biodegradation of a labile dissolved organic carbon (DOCL), exemplified by sodium benzoate, was studied in a novel laboratory flume system under a combination of different overlying water velocities, losing or gaining fluxes, and biofilm distribution (“surficial” or “homogeneous distribution”). The overall objective of this study was to evaluate the effect of different flow conditions on DOCL biodegradation in the HZ. The results showed that overlying velocity was the dominant factor affecting DOCL biodegradation, regardless of biofilm distribution. Gaining flow conditions also induced a slight increase in the biodegradation rates as compared to losing or neutral flow conditions, due to additional oxygen input from the upwelling water. The aerobic reactive zone under all flow conditions was limited to the upper section of the benthic biofilm (several millimeters), where the surficial biofilm showed the highest activity. Our results demonstrate the processes affecting DOCL biodegradation in the hyporheic zone and will help to implement future modeling of DOC transport in streams.
UR - http://www.scopus.com/inward/record.url?scp=84976588092&partnerID=8YFLogxK
U2 - 10.1002/lno.10344
DO - 10.1002/lno.10344
M3 - Article
AN - SCOPUS:84976588092
SN - 0024-3590
VL - 61
SP - 1839
EP - 1852
JO - Limnology and Oceanography
JF - Limnology and Oceanography
IS - 5
ER -