TY - JOUR
T1 - Biogenic Guanine Crystals Are Solid Solutions of Guanine and Other Purine Metabolites
AU - Pinsk, Noam
AU - Wagner, Avital
AU - Cohen, Lilian
AU - Smalley, Christopher J.H.
AU - Hughes, Colan E.
AU - Zhang, Gan
AU - Pavan, Mariela J.
AU - Casati, Nicola
AU - Jantschke, Anne
AU - Goobes, Gil
AU - Harris, Kenneth D.M.
AU - Palmer, Benjamin A.
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/3/23
Y1 - 2022/3/23
N2 - Highly reflective crystals of the nucleotide base guanine are widely distributed in animal coloration and visual systems. Organisms precisely control the morphology and organization of the crystals to optimize different optical effects, but little is known about how this is achieved. Here we examine a fundamental question that has remained unanswered after over 100 years of research on guanine: what are the crystals made of? Using solution-state and solid-state chemical techniques coupled with structural analysis by powder XRD and solid-state NMR, we compare the purine compositions and the structures of seven biogenic guanine crystals with different crystal morphologies, testing the hypothesis that intracrystalline dopants influence the crystal shape. We find that biogenic "guanine" crystals are not pure crystals but molecular alloys (aka solid solutions and mixed crystals) of guanine, hypoxanthine, and sometimes xanthine. Guanine host crystals occlude homogeneous mixtures of other purines, sometimes in remarkably large amounts (up to 20% of hypoxanthine), without significantly altering the crystal structure of the guanine host. We find no correlation between the biogenic crystal morphology and dopant content and conclude that dopants do not dictate the crystal morphology of the guanine host. The ability of guanine crystals to host other molecules enables animals to build physiologically "cheaper" crystals from mixtures of metabolically available purines, without impeding optical functionality. The exceptional levels of doping in biogenic guanine offer inspiration for the design of mixed molecular crystals that incorporate multiple functionalities in a single material.
AB - Highly reflective crystals of the nucleotide base guanine are widely distributed in animal coloration and visual systems. Organisms precisely control the morphology and organization of the crystals to optimize different optical effects, but little is known about how this is achieved. Here we examine a fundamental question that has remained unanswered after over 100 years of research on guanine: what are the crystals made of? Using solution-state and solid-state chemical techniques coupled with structural analysis by powder XRD and solid-state NMR, we compare the purine compositions and the structures of seven biogenic guanine crystals with different crystal morphologies, testing the hypothesis that intracrystalline dopants influence the crystal shape. We find that biogenic "guanine" crystals are not pure crystals but molecular alloys (aka solid solutions and mixed crystals) of guanine, hypoxanthine, and sometimes xanthine. Guanine host crystals occlude homogeneous mixtures of other purines, sometimes in remarkably large amounts (up to 20% of hypoxanthine), without significantly altering the crystal structure of the guanine host. We find no correlation between the biogenic crystal morphology and dopant content and conclude that dopants do not dictate the crystal morphology of the guanine host. The ability of guanine crystals to host other molecules enables animals to build physiologically "cheaper" crystals from mixtures of metabolically available purines, without impeding optical functionality. The exceptional levels of doping in biogenic guanine offer inspiration for the design of mixed molecular crystals that incorporate multiple functionalities in a single material.
UR - http://www.scopus.com/inward/record.url?scp=85126280887&partnerID=8YFLogxK
U2 - 10.1021/jacs.2c00724
DO - 10.1021/jacs.2c00724
M3 - Article
C2 - 35255213
AN - SCOPUS:85126280887
SN - 0002-7863
VL - 144
SP - 5180
EP - 5189
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 11
ER -