Bioremediation of hydrocarbon by co-culturing of biosurfactant-producing bacteria in microbial fuel cell with Fe2O3-modified anode

Tahseena Naaz, Shilpa Kumari, Kalpana Sharma, Vandana Singh, Azmat Khan, Soumya Pandit, Kanu Priya, Dipak A. Jadhav

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The most common type of environmental contamination is petroleum hydrocarbons. Sustainable and environmentally friendly treatment strategies must be explored in light of the increasing challenges of toxic and critical wastewater contamination. This paper deals with the bacteria-producing biosurfactant and their employment in the bioremediation of hydrocarbon-containing waste through a microbial fuel cell (MFC) with Pseudomonas aeruginosa (exoelectrogen) as co-culture for simultaneous power generation. Staphylococcus aureus is isolated from hydrocarbon-contaminated soil and is effective in hydrocarbon degradation by utilizing hydrocarbon (engine oil) as the only carbon source. The biosurfactant was purified using silica-gel column chromatography and characterised through FTIR and GCMS, which showed its glycolipid nature. The isolated strains are later employed in the MFCs for the degradation of the hydrocarbon and power production simultaneously which has shown a power density of 6.4 W/m3 with a 93% engine oil degradation rate. A biogenic Fe2O3 nanoparticle (NP) was synthesized using Bambusa arundinacea shoot extract for anode modification. It increased the power output by 37% and gave the power density of 10.2 W/m3. Thus, simultaneous hydrocarbon bioremediation from oil-contamination and energy recovery can be achieved effectively in MFC with modified anode.

Original languageEnglish
Article number119768
JournalJournal of Environmental Management
Volume351
DOIs
StatePublished - 1 Feb 2024
Externally publishedYes

Keywords

  • Anode modification
  • Bacterial synergy
  • Biosurfactant
  • Hydrocarbon degradation
  • Nanoparticle
  • Power density

ASJC Scopus subject areas

  • Environmental Engineering
  • Waste Management and Disposal
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Bioremediation of hydrocarbon by co-culturing of biosurfactant-producing bacteria in microbial fuel cell with Fe2O3-modified anode'. Together they form a unique fingerprint.

Cite this