@inbook{7d00edaa100b49c786542b3c221c7d70,
title = "Biosensing configurations using guided wave resonant structures",
abstract = "Resonant structures are characterized by a high quality factor representing the sensitivity to perturbations in a cavity. In guided wave resonant structures the optical field is evanescent, forming a region where the resonance can be modified by externally varying the refractive index within this evanescence region. The resonance nature of these structures then allows high sensitivity to analytes, gases, or other external index perturbations down to the order of 10-8 RIU. In this article several configurations of guided wave resonant structures and their use for sensing are reviewed with special emphasis on grating coupled resonant structures. The sensor performance is discussed using analytic approaches based on planar waveguide sensors theory and using the 4 × 4 characteristic matrix approaches for multilayered structure and with homogenized grating treated as a uniaxial thin film. The results agree very well with experiment and with rigorous electromagnetic calculations even when the cover is anisotropic medium such as a liquid crystal that can be used for tunable filtering or temperature sensing.",
keywords = "Biosensors, Gratings, Guided wave resonance, Microresonators, Optical sensors, Resonant mirror, Tunable filters, Waveguides",
author = "I. Abdulhalim",
year = "2008",
month = jan,
day = "1",
doi = "10.1007/978-1-4020-6952-9_9",
language = "English",
isbn = "9781402069505",
series = "NATO Science for Peace and Security Series B: Physics and Biophysics",
publisher = "Springer Verlag",
pages = "211--228",
booktitle = "Optical Waveguide Sensing and Imaging",
address = "Germany",
}