Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3

Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, Meirav Zehavi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In a disk graph, every vertex corresponds to a disk in R2 and two vertices are connected by an edge whenever the two corresponding disks intersect. Disk graphs form an important class of geometric intersection graphs, which generalizes both planar graphs and unit-disk graphs. We study a fundamental optimization problem in algorithmic graph theory, Bipartization (also known as Odd Cycle Transversal), on the class of disk graphs. The goal of Bipartization is to delete a minimum number of vertices from the input graph such that the resulting graph is bipartite. A folklore (polynomial-time) 3-approximation algorithm for Bipartization on disk graphs follows from the classical framework of Goemans and Williamson [Combinatorica’98] for cycle-hitting problems. For over two decades, this result has remained the best known approximation for the problem (in fact, even for Bipartization on unit-disk graphs). In this paper, we achieve the first improvement upon this result, by giving a (3 − α)-approximation algorithm for Bipartization on disk graphs, for some constant α > 0. Our algorithm directly generalizes to the broader class of pseudo-disk graphs. Furthermore, our algorithm is robust in the sense that it does not require a geometric realization of the input graph to be given.

Original languageEnglish
Title of host publicationApproximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2024
EditorsAmit Kumar, Noga Ron-Zewi
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773485
DOIs
StatePublished - 1 Sep 2024
Event27th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2024 and the 28th International Conference on Randomization and Computation, RANDOM 2024 - London, United Kingdom
Duration: 28 Aug 202430 Aug 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume317
ISSN (Print)1868-8969

Conference

Conference27th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2024 and the 28th International Conference on Randomization and Computation, RANDOM 2024
Country/TerritoryUnited Kingdom
CityLondon
Period28/08/2430/08/24

Keywords

  • approximation algorithms
  • bipartization
  • geometric intersection graphs

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Bipartizing (Pseudo-)Disk Graphs: Approximation with a Ratio Better than 3'. Together they form a unique fingerprint.

Cite this