Bismuth doping of induction furnace synthesized Mg2Si, Mg2Sn and Mg2Ge thermoelectric compounds

Meital Cahana, Yaniv Gelbstein

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Silicides and especially Mg2X (X = Si, Sn, Ge) are considered as attractive thermoelectric materials, which are capable of an efficient heat to electricity energy conversion. They have low density, abundant and affordable raw constituents, and good mechanical properties. Yet, the synthesis of such Mg- based compounds is usually very challenging due to the reactivity, volatility and oxidation tendency of Mg. These challenges led many of the researchers exploring these materials, to low temperature synthesis routes, where, the most common is a solid-state mechanical alloying, using ball milling. In such synthesis approaches, Mg volatility was compensated upon the introduction of excess Mg into the source materials, beyond the stoichiometric composition. In the current research a novel synthesis route based on an induction melting in a closed Ta chamber is proposed. Using this technique undoped and Bi-doped Mg2X (X = Si, Sn, Ge) compounds were synthesized and analyzed. Phase separation into Mg2X- and Mg3Bi2-rich phases was observed for the Bi-doped compositions, with an associated significant reduction of the lattice thermal conductivity.

Original languageEnglish
Article number106767
JournalIntermetallics
Volume120
DOIs
StatePublished - 1 May 2020

ASJC Scopus subject areas

  • General Chemistry
  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Bismuth doping of induction furnace synthesized Mg2Si, Mg2Sn and Mg2Ge thermoelectric compounds'. Together they form a unique fingerprint.

Cite this