TY - JOUR
T1 - Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites
T2 - A computational and experimental study
AU - Yu, Pingfeng
AU - Wang, Zijian
AU - Marcos-Hernandez, Mariana
AU - Zuo, Pengxiao
AU - Zhang, Danning
AU - Powell, Camilah
AU - Pan, Aaron Y.
AU - Villagrán, Dino
AU - Wong, Michael S.
AU - Alvarez, Pedro J.J.
N1 - Funding Information:
This study was supported by the NSF ERC on Nanotechnology-Enabled Water Treatment (EEC-1449500), and by NSF PIRE grant (OISE-1545756). We thank Laurel Bingman, Bo Zhang and Xifan Wang for their help with phage and material characterization, and Alloysius J. Budi Utama and Ling-li Li for helping with biofilm imaging and analyses.
Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Biofilms cause a variety of pervasive problems in water treatment, distribution and reuse systems that are difficult to mitigate due to their resistance to disinfectants. We used magnetic phage-nanocomposite conjugates (PNCs) to target bacteria in biofilm inner layers for bottom-up eradication. Polyvalent Podoviridae phages PEB1 (54 nm) or PEB2 (86 nm) were covalently conjugated (via amide bonds) with magnetic colloidal nanoparticle clusters (CNCs) of different sizes (150, 250 or 500 nm). Smaller CNCs with higher density of amino groups loaded phages more efficiently than the largest CNCs (e.g., for PEB1, 60 ± 4, 62 ± 5, and 47 ± 4 phages were loaded per μm2). Smaller PNCs dispersed phages more evenly throughout the biofilm bottom, significantly disrupting the biofilm bottom layer and detaching the biofilm within 6 h. The biofilm removal efficiency was 98.3 ± 1.4% for dual species biofilm (i.e., Escherichia coli and Pseudomonas aeruginosa) and 92.2 ± 3.1% for multi-species biofilm (i.e., E. coli, P. aeruginosa, and non-hosts Bacillus subtilis and Shewanella oneidensis). Large PNCs caused higher physical disruption but lower corresponding removal efficiencies (i.e., 80.2 ± 3.4% for dual species biofilm and 67.6 ± 3.8% for multi-species biofilm) due to lower horizontal diffusion at the bottom of the biofilm. A semi-empirical numerical model corroborated the higher biofilm removal efficiency with smaller PNCs and inferred that PNC size influences the mode of phage propagation: Small PNCs facilitate biofilm bottom clearance with significant horizontal dispersion while large PNCs mainly enhance vertical propagation. Overall, this study demonstrates the importance of size control to enhance the biofilm eradication capability of PNCs as an alternative or complementary biofilm control strategy.
AB - Biofilms cause a variety of pervasive problems in water treatment, distribution and reuse systems that are difficult to mitigate due to their resistance to disinfectants. We used magnetic phage-nanocomposite conjugates (PNCs) to target bacteria in biofilm inner layers for bottom-up eradication. Polyvalent Podoviridae phages PEB1 (54 nm) or PEB2 (86 nm) were covalently conjugated (via amide bonds) with magnetic colloidal nanoparticle clusters (CNCs) of different sizes (150, 250 or 500 nm). Smaller CNCs with higher density of amino groups loaded phages more efficiently than the largest CNCs (e.g., for PEB1, 60 ± 4, 62 ± 5, and 47 ± 4 phages were loaded per μm2). Smaller PNCs dispersed phages more evenly throughout the biofilm bottom, significantly disrupting the biofilm bottom layer and detaching the biofilm within 6 h. The biofilm removal efficiency was 98.3 ± 1.4% for dual species biofilm (i.e., Escherichia coli and Pseudomonas aeruginosa) and 92.2 ± 3.1% for multi-species biofilm (i.e., E. coli, P. aeruginosa, and non-hosts Bacillus subtilis and Shewanella oneidensis). Large PNCs caused higher physical disruption but lower corresponding removal efficiencies (i.e., 80.2 ± 3.4% for dual species biofilm and 67.6 ± 3.8% for multi-species biofilm) due to lower horizontal diffusion at the bottom of the biofilm. A semi-empirical numerical model corroborated the higher biofilm removal efficiency with smaller PNCs and inferred that PNC size influences the mode of phage propagation: Small PNCs facilitate biofilm bottom clearance with significant horizontal dispersion while large PNCs mainly enhance vertical propagation. Overall, this study demonstrates the importance of size control to enhance the biofilm eradication capability of PNCs as an alternative or complementary biofilm control strategy.
UR - http://www.scopus.com/inward/record.url?scp=85076213604&partnerID=8YFLogxK
U2 - 10.1039/c9en00827f
DO - 10.1039/c9en00827f
M3 - Article
AN - SCOPUS:85076213604
SN - 2051-8153
VL - 6
SP - 3539
EP - 3550
JO - Environmental Science: Nano
JF - Environmental Science: Nano
IS - 12
ER -