TY - GEN
T1 - Bounding the fairness and accuracy of classifiers from population statistics
AU - Sabato, Sivan
AU - Yom-Tov, Elad
N1 - Publisher Copyright:
Copyright © 2020 by the Authors. All rights reserved.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - We consider the study of a classification model whose properties are impossible to estimate using a validation set, either due to the absence of such a set or because access to the classifier, even as a black-box, is impossible. Instead, only aggregate statistics on the rate of positive predictions in each of several sub-populations are available, as well as the true rates of positive labels in each of these sub-populations. We show that these aggregate statistics can be used to lowerbound the discrepancy of a classifier, which is a measure that balances inaccuracy and unfairness. To this end, we define a new measure of unfairness, equal to the fraction of the population on which the classifier behaves differently, compared to its global, ideally fair behavior, as defined by the measure of equalized odds. We propose an efficient and practical procedure for finding the best possible lower bound on the discrepancy of the classifier, given the aggregate statistics, and demonstrate in experiments the empirical tightness of this lower bound, as well as its possible uses on various types of problems, ranging from estimating the quality of voting polls to measuring the effectiveness of patient identification from internet search queries. The code and data are available at https://github.com/ sivansabato/bfa.
AB - We consider the study of a classification model whose properties are impossible to estimate using a validation set, either due to the absence of such a set or because access to the classifier, even as a black-box, is impossible. Instead, only aggregate statistics on the rate of positive predictions in each of several sub-populations are available, as well as the true rates of positive labels in each of these sub-populations. We show that these aggregate statistics can be used to lowerbound the discrepancy of a classifier, which is a measure that balances inaccuracy and unfairness. To this end, we define a new measure of unfairness, equal to the fraction of the population on which the classifier behaves differently, compared to its global, ideally fair behavior, as defined by the measure of equalized odds. We propose an efficient and practical procedure for finding the best possible lower bound on the discrepancy of the classifier, given the aggregate statistics, and demonstrate in experiments the empirical tightness of this lower bound, as well as its possible uses on various types of problems, ranging from estimating the quality of voting polls to measuring the effectiveness of patient identification from internet search queries. The code and data are available at https://github.com/ sivansabato/bfa.
UR - http://www.scopus.com/inward/record.url?scp=85101832455&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85101832455
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 8286
EP - 8295
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
PB - International Machine Learning Society (IMLS)
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -