Breath-by-breath detection of apneic events for OSA severity estimation using non-contact audio recordings

T. Rosenwein, E. Dafna, A. Tarasiuk, Y. Zigel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

Obstructive sleep apnea (OSA) is a prevalent sleep disorder, characterized by recurrent episodes of upper airway obstructions during sleep. We hypothesize that breath-by-breath audio analysis of the respiratory cycle (i.e., inspiration and expiration phases) during sleep can reliably estimate the apnea hypopnea index (AHI), a measure of OSA severity. The AHI is calculated as the average number of apnea (A)/hypopnea (H) events per hour of sleep. Audio signals recordings of 186 adults referred to OSA diagnosis were acquired in-laboratory and at-home conditions during polysomnography and WatchPat study, respectively. A/H events were automatically segmented and classified using a binary random forest classifier. Total accuracy rate of 86.3% and an agreement of κ=42.98% were achieved in A/H event detection. Correlation of r=0.87 (r=0.74), diagnostic agreement of 76% (81.7%), and average absolute difference AHI error of 7.4 (7.8) (events/hour) were achieved in in-laboratory (at-home) conditions, respectively. Here we provide evidence that A/H events can be reliably detected at their exact time locations during sleep using non-contact audio approach. This study highlights the potential of this approach to reliably evaluate AHI in at home conditions.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers
Pages7688-7691
Number of pages4
ISBN (Electronic)9781424492718
DOIs
StatePublished - 4 Nov 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

Keywords

  • OSA
  • audio signal processing
  • random forest

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Breath-by-breath detection of apneic events for OSA severity estimation using non-contact audio recordings'. Together they form a unique fingerprint.

Cite this