Broadcast channels with cooperation: Capacity and duality for the semi-deterministic case

Ziv Goldfeld, Haim H. Permuter, Gerhard Kramer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The semi-deterministic (SD) broadcast channel (BC) where the decoders cooperate via a one-sided link is considered and its capacity region is derived. The direct proof relies on an achievable region for the general BC that is tight for the SD scenario. This achievable region follows by a coding scheme that combines rate-splitting and binning with Marton and superposition coding. The SD-BC is shown to be operationally equivalent to a class of relay-BCs (RBCs) and the correspondence between their capacity regions is established. Furthermore, a dual source coding problem, referred to as the Wyner-Ahlswede-Körner (WAK) problem with one-sided encoder cooperation, is proposed. Transformation principles between the problems are presented and the optimal rate region for the AK problem is stated. The SD-BC capacity and the admissible region of the AK problem are shown to be dual to one another in the sense that the information measures defining the corner points of both regions coincide. Special cases of the two problems are inspected and shown to maintain duality.

Original languageEnglish
Title of host publication2015 IEEE Information Theory Workshop, ITW 2015
PublisherInstitute of Electrical and Electronics Engineers
ISBN (Electronic)9781479955268
DOIs
StatePublished - 24 Jun 2015
Event2015 IEEE Information Theory Workshop, ITW 2015 - Jerusalem, Israel
Duration: 26 Apr 20151 May 2015

Publication series

Name2015 IEEE Information Theory Workshop, ITW 2015

Conference

Conference2015 IEEE Information Theory Workshop, ITW 2015
Country/TerritoryIsrael
CityJerusalem
Period26/04/151/05/15

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Networks and Communications
  • Information Systems
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Broadcast channels with cooperation: Capacity and duality for the semi-deterministic case'. Together they form a unique fingerprint.

Cite this