Abstract
In the present study, carbon and bromine isotope effects during UV-photodegradation of bromophenols in aqueous and ethanolic solutions were determined. An anomalous relatively high inverse bromine isotope fractionation (εreactive position up to +5.1‰) along with normal carbon isotope effect (εreactive position of -12.6‰ to -23.4‰) observed in our study may be attributed to coexistence of both mass-dependent and mass-independent isotope fractionation of C-Br bond cleavage. Isotope effects of a similar scale were observed for all the studied reactions in ethanol, and for 4-bromophenol in aqueous solution. This may point out related radical mechanism for these processes. The lack of any carbon and bromine isotope effects during photodegradation of 2-bromophenol in aqueous solution possibly indicates that C-Br bond cleavage is not a rate-limiting step in the reaction. The bromine isotope fractionation, without any detectable carbon isotope effect, that was observed for 3-bromophenol photolysis in aqueous solution probably originates from mass-independent fractionation.
Original language | English |
---|---|
Pages (from-to) | 14147-14153 |
Number of pages | 7 |
Journal | Environmental Science and Technology |
Volume | 47 |
Issue number | 24 |
DOIs | |
State | Published - 17 Dec 2013 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry