Abstract
The intensive development of hydrogen technologies has made very promising applications of one of the cheapest and easily produced bulk MgB2-based superconductors. These materials are capable of operating effectively at liquid hydrogen temperatures (around 20 K) and are used as elements in various devices, such as magnets, magnetic bearings, fault current limiters, electrical motors, and generators. These applications require mechanically and chemically stable materials with high superconducting characteristics. This review considers the results of superconducting and structural property studies of MgB2-based bulk materials prepared under different pressure–temperature conditions using different promising methods: hot pressing (30 MPa), spark plasma sintering (16–96 MPa), and high quasi-hydrostatic pressures (2 GPa). Much attention has been paid to the study of the correlation between the manufacturing pressure–temperature conditions and superconducting characteristics. The influence of the amount and distribution of oxygen impurity and an excess of boron on superconducting characteristics is analyzed. The dependence of superconducting characteristics on the various additions and changes in material structure caused by these additions are discussed. It is shown that different production conditions and additions improve the superconducting MgB2 bulk properties for various ranges of temperature and magnetic fields, and the optimal technology may be selected according to the application requirements. We briefly discuss the possible applications of MgB2 superconductors in devices, such as fault current limiters and electric machines.
Original language | English |
---|---|
Article number | 2787 |
Journal | Materials |
Volume | 17 |
Issue number | 11 |
DOIs | |
State | Published - 1 Jun 2024 |
Keywords
- effect of impurity oxygen
- magnesium diboride bulk superconductors
- pinning
- structural study
- superconducting properties
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics