Can Complete-Novice E-Bike Riders Be Trained to Detect Unmaterialized Traffic Hazards in the Urban Environment? An Exploratory Study

Anat Meir

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Although hazard perception is an important skill found to be crucial for negotiating traffic among various types of road users, few studies have systematically investigated e-bike riders’ ability to perceive potential unmaterialized hazardous situations or aimed to enhance these abilities through training. The present study explored the formation of two hazard perception training interventions based upon exposing young complete-novice e-bike riders to a vast array of materialized traffic hazards, with the aim of evaluating their effectiveness in enriching the ability to anticipate unmaterialized hazards. Young complete-novice e-bike riders were allocated into one of two intervention modes (‘Act and Anticipate Training’ or ‘Predictive and Commentary Training’) or a control group (ten in each group). AAT members underwent a theoretical tutorial, then observed clips depicting real-time hazardous situations footage taken from an e-bike rider’s perspective and were asked to perform a hazard detection task. PCT members underwent a theoretical tutorial, then a ‘what might happen next?’ task, followed by observation of video footage with expert commentary. A week later, participants were requested to complete a hazard perception test, during which they viewed ten videos and pressed a response button whenever they identified a hazardous situation. Overall, participants in both interventions were more aware of potential unmaterialized hazards compared to the control in both their response sensitivity and verbal descriptions. Trainees were responsive to the developed training interventions. Thus, actively detecting materialized hazards may produce effective training that enriches these road users’ hazard perception skills and allows them to safely negotiate traffic. Advantages of each of the training methodologies along with implications for intervention strategies, licensing, and policy development are discussed.

Original languageEnglish
Article number10869
JournalSustainability (Switzerland)
Volume14
Issue number17
DOIs
StatePublished - 1 Sep 2022
Externally publishedYes

Keywords

  • e-bike
  • hazard perception
  • skill
  • traffic safety
  • training

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Hardware and Architecture
  • Computer Networks and Communications
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Can Complete-Novice E-Bike Riders Be Trained to Detect Unmaterialized Traffic Hazards in the Urban Environment? An Exploratory Study'. Together they form a unique fingerprint.

Cite this