Fonctions de Carathéodory sur une surface de Riemann et espaces à noyau reproduisant associés

Translated title of the contribution: Carathéodory functions on a Riemann surface and associated reproducing kernel Hilbert spaces

Daniel Alpay, Victor Vinnikov

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Carathéodory functions are functions which are analytic and with a positive real part in the open upper half-plane C+. They are associated to reproducing kernel Hilbert spaces (with reproducing kernel of the form (2)) and play an important role in moment problems and in prediction theory of second order stationary processes. We study their counterpart in the setting of compact real Riemann surfaces.

Translated title of the contributionCarathéodory functions on a Riemann surface and associated reproducing kernel Hilbert spaces
Original languageFrench
Pages (from-to)523-528
Number of pages6
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume333
Issue number6
DOIs
StatePublished - 1 Sep 2001

Fingerprint

Dive into the research topics of 'Carathéodory functions on a Riemann surface and associated reproducing kernel Hilbert spaces'. Together they form a unique fingerprint.

Cite this