Cardiac tissue engineering in magnetically actuated scaffolds

Yulia Sapir, Boris Polyak, Smadar Cohen

Research output: Contribution to journalArticlepeer-review

55 Scopus citations


Cardiac tissue engineering offers new possibilities for the functional and structural restoration of damaged or lost heart tissue by applying cardiac patches created in vitro. Engineering such functional cardiac patches is a complex mission, involving material design on the nano- and microscale as well as the application of biological cues and stimulation patterns to promote cell survival and organization into a functional cardiac tissue. Herein, we present a novel strategy for creating a functional cardiac patch by combining the use of a macroporous alginate scaffold impregnated with magnetically responsive nanoparticles (MNPs) and the application of external magnetic stimulation. Neonatal rat cardiac cells seeded within the magnetically responsive scaffolds and stimulated by an alternating magnetic field of 5 Hz developed into matured myocardial tissue characterized by anisotropically organized striated cardiac fibers, which preserved its features for longer times than non-stimulated constructs. A greater activation of AKT phosphorylation in cardiac cell constructs after applying a short-term (20 min) external magnetic field indicated the efficacy of magnetic stimulation to actuate at a distance and provided a possible mechanism for its action. Our results point to a synergistic effect of magnetic field stimulation together with nanoparticulate features of the scaffold surface as providing the regenerating environment for cardiac cells driving their organization into functionally mature tissue.

Original languageEnglish
Article number014009
Issue number1
StatePublished - 10 Jan 2014

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Cardiac tissue engineering in magnetically actuated scaffolds'. Together they form a unique fingerprint.

Cite this