Cerebellar regions involved in adaptation to force field and visuomotor perturbation

Opher Donchin, Kasja Rabe, Jörn Diedrichsen, Níall Lally, Beate Schoch, Elke Ruth Gizewski, Dagmar Timmann

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

Studies with patients and functional magnetic resonance imaging investigations have demonstrated that the cerebellum plays an essential role in adaptation to visuomotor rotation and force field perturbation. To identify cerebellar structures involved in the two tasks, we studied 19 patients with focal lesions after cerebellar infarction. Focal lesions were manually traced on magnetic resonance images and normalized using a new spatially unbiased template of the cerebellum. In addition, we reanalyzed data from 14 patients with cerebellar degeneration using voxel-based morphometry. We found that adjacent regions with only little overlap in the anterior arm area (lobules IV to VI) are important for adaptation in both tasks. Although adaptation to the force field task lay more anteriorly (lobules IV and V), lobule VI was more important for the visuomotor task. In addition, regions in the posterolateral cerebellum (Crus I and II) contributed to both tasks. No consistent involvement of the posterior arm region (lobule VIII) was found. Independence of the two kinds of adaptation is further supported by findings that performance in one task did not correlate to performance in the other task. Our results show that the anterior arm area of the cerebellum is functionally divided into a more posterior part of lobule VI, extending into lobule V, related to visuomotor adaption, and a more anterior part including lobules IV and V, related to force field adaption. The posterolateral cerebellum may process common aspects of both tasks.

Original languageEnglish
Pages (from-to)134-147
Number of pages14
JournalJournal of Neurophysiology
Volume107
Issue number1
DOIs
StatePublished - 1 Jan 2012

Keywords

  • Cerebellar structures
  • Motor learning
  • Voxel-based morphometry

ASJC Scopus subject areas

  • General Neuroscience
  • Physiology

Fingerprint

Dive into the research topics of 'Cerebellar regions involved in adaptation to force field and visuomotor perturbation'. Together they form a unique fingerprint.

Cite this