Abstract
In wetlands, stream riverbanks represent a large redox reactive front. At their surface, ferric deposits promote their capacity to trap nutrients and metals. Given that rare earth elements (REE) are now considered as emerging pollutants, it seems that the riverbank interface is a strategic area between wetlands and streams in terms of controlling the environmental dissemination of REE. Therefore, the evolutions of the REE distribution and cerium (Ce) anomaly (Ce/Ce*, i.e. depleted or enriched Ce concentration compared to the other REE) were studied at various locations on a riverbank. The positive Ce anomaly is related to a high Fe content, a low organic carbon/iron ratio ((OC)/Fe) and newly formed Fe oxyhydroxides independently of their interactions with organic matter. Micro-X ray fluorescence (μ-XRF) mapping confirms Ce accumulation with ferric deposits. The Ce speciation exhibits a mix of Ce(III) and Ce(IV) in the ferric deposits, almost 20% of Ce occurred as Ce(IV) due to oxidation by newly formed Fe oxyhydroxides, while the subsurface horizons only display Ce(III). These results provide evidence that the Ce anomaly variation observed in stream water between low and high flow periods is partly due to the erosion of ferric deposits exhibiting a positive Ce anomaly. Therefore, the Ce anomaly can be considered as a fingerprint of the release of Fe colloids in the rivers and streams connected to the wetland.
Original language | English |
---|---|
Article number | 136544 |
Journal | Science of the Total Environment |
Volume | 713 |
DOIs | |
State | Published - 15 Apr 2020 |
Externally published | Yes |
Keywords
- Cerium speciation
- Fe oxyhydroxides
- Riverbank
- Wetland
- μ-XANES Ce L-edge
- μ-XRF
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- Waste Management and Disposal
- Pollution