Chalcogenide phase-change material-based, ultrathin, all-dielectric tunable mid-infrared metamaterial perfect absorber

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Ultrathin, all-dielectric, metamaterial design based on an asymmetrical optical micro-/nanocavity, enclosing a 10 nm thick Ge2Sb2Te5 photoabsorber film, is inversely optimized for perfect tunable absorption in the mid-infrared. The absorption can be actively/geometrically pre-/post-fabrication spectrally tuned.

Original languageEnglish
Title of host publication2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers
ISBN (Electronic)9781957171050
StatePublished - 1 Jan 2022
Event2022 Conference on Lasers and Electro-Optics, CLEO 2022 - San Jose, United States
Duration: 15 May 202220 May 2022

Publication series

Name2022 Conference on Lasers and Electro-Optics, CLEO 2022 - Proceedings

Conference

Conference2022 Conference on Lasers and Electro-Optics, CLEO 2022
Country/TerritoryUnited States
CitySan Jose
Period15/05/2220/05/22

ASJC Scopus subject areas

  • Instrumentation
  • Spectroscopy
  • Biomedical Engineering
  • Electrical and Electronic Engineering
  • Management, Monitoring, Policy and Law
  • Materials Science (miscellaneous)
  • Acoustics and Ultrasonics
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Chalcogenide phase-change material-based, ultrathin, all-dielectric tunable mid-infrared metamaterial perfect absorber'. Together they form a unique fingerprint.

Cite this