Characterization of nonionic microemulsions by EPR. Part II. The effect of competitive solubilization of cholesterol and phytosterols on the nanostructure

Shoshana Rozner, Anna Kogan, Somil Mehta, Ponisseril Somasundaran, Abraham Aserin, Nissim Garti, Maria Francesca Ottaviani

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

One of the theories for the reduction of cholesterol (CH) in the blood stream by the consumption of phytosterols (PS) states that these two types of sterols compete for solubilization within the dietary mixed micelles (DMM). In this study, a fully dilutable nonionic microemulsion system was used as a model to explain a possible competitive solubilization mechanism of CH and PS molecules using an electron paramagnetic resonance (EPR) technique that reveals relevant intramicellar properties. The effect of the solubilized sterols on the structural changes occurring in the vicinity of the surfactant head groups or closer to the oil phase was examined by controlling the pH of the environment, which influences the probe locus between the surfactant molecules. The results indicate that the structure transformations in the surfactant layer closer to the vicinity of the head groups region are more pronounced than the structural changes occurring in the region between the surfactant tails closer to the oil phase, except for the oil-in-water (O/W) micelles region. The study also shows that when each of the sterols is solubilized alone, they occupy different solubilization sites within the microemulsion nanostructures, in comparison to their solubilization together. This behavior is most pronounced in 3:1 (wt ratio) CH/PS systems. The main conclusion is that cosolubilization of these sterols leads to competitive solubilization between the surfactant tails closer to the oil phase locus, where the CH molecules are pushed toward the interface by the PS molecules. This conclusion might better explain the competitive solubilization of the two sterols in the human digestive tract.

Original languageEnglish
Pages (from-to)700-707
Number of pages8
JournalJournal of Physical Chemistry B
Volume113
Issue number3
DOIs
StatePublished - 22 Jan 2009
Externally publishedYes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Characterization of nonionic microemulsions by EPR. Part II. The effect of competitive solubilization of cholesterol and phytosterols on the nanostructure'. Together they form a unique fingerprint.

Cite this