Abstract
The Rosenzweig-Porter random matrix ensemble serves as a qualitative phenomenological model for the level statistics and fractality of eigenstates across the many-body localization transition in static systems. We propose a unitary (circular) analogue of this ensemble, which similarly captures the phenomenology of many-body localization in periodically driven (Floquet) systems. We define this ensemble as the outcome of a Dyson Brownian motion process. We show numerical evidence that this ensemble shares some key statistical properties with the Rosenzweig-Porter ensemble for both the eigenvalues and the eigenstates.
Original language | English |
---|---|
Article number | 082 |
Journal | SciPost Physics |
Volume | 12 |
Issue number | 3 |
DOIs | |
State | Published - 1 Mar 2022 |
ASJC Scopus subject areas
- General Physics and Astronomy