Close-contact melting modeling combined with the enthalpy method

Yoram Kozak, Gennady Ziskind

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Design of thermal energy storage systems based on solid-liquid phase-change materials (PCMs) can be complex, and involves a detailed analysis of different physical phenomena related to melting and solidification. All these phenomena usually cannot be described by analytical models, and require development of advanced and reliable numerical modeling techniques. One of the most common numerical methods, for a general solution of phase-change problems, is the enthalpy-porosity method. However, the available literature shows that this method is not completely suitable for cases in which the solid bulk moves, e.g. towards a heated surface. The latter phenomenon is called close-contact melting (CCM), because only a thin molten layer separates between the solid and the hot surface, as the melt is squeezed to the sides by the descending solid bulk. The present work demonstrates a numerical model that combines the enthalpy method with close-contact modeling. The model ability to solve CCM problems for an arbitrary solid shape is verified by comparison with a known solution from the literature. The model is then applied for a new problem, CCM of a horizontal cylinder on an isothermal plate.

Original languageEnglish
Title of host publicationProceedings of CHT-15
Subtitle of host publication6th International Symposium on Advances in Computational Heat Transfer, 2015
PublisherBegell House Inc.
Pages636-639
Number of pages4
ISBN (Print)9781567004298
DOIs
StatePublished - 1 Jan 2015
Event6th International Symposium on Advances in Computational Heat Transfer , CHT 2015 - New Brunswick, United States
Duration: 25 May 201529 May 2015

Publication series

NameInternational Symposium on Advances in Computational Heat Transfer
ISSN (Print)2578-5486

Conference

Conference6th International Symposium on Advances in Computational Heat Transfer , CHT 2015
Country/TerritoryUnited States
CityNew Brunswick
Period25/05/1529/05/15

ASJC Scopus subject areas

  • Fluid Flow and Transfer Processes
  • Mechanical Engineering
  • Condensed Matter Physics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Close-contact melting modeling combined with the enthalpy method'. Together they form a unique fingerprint.

Cite this