TY - JOUR
T1 - Clustering of Gravitational Wave and Supernovae events
T2 - A multitracer analysis in Luminosity Distance Space
AU - Libanore, S.
AU - Artale, M. C.
AU - Karagiannis, D.
AU - Liguori, M.
AU - Bartolo, N.
AU - Bouffanais, Y.
AU - Mapelli, M.
AU - Matarrese, S.
N1 - Publisher Copyright:
© 2022 IOP Publishing Ltd and Sissa Medialab.
PY - 2022/2/1
Y1 - 2022/2/1
N2 - We study the clustering of Gravitational Wave (GW) merger events and Supernovae IA (SN), as cosmic tracers in Luminosity Distance Space. We modify the publicly available CAMB code to numerically evaluate auto- and cross- power spectra for the different sources, including Luminosity Distance Space distortion effects generated by peculiar velocities and lensing convergence. We perform a multitracer Fisher analysis to forecast expected constraints on cosmological and GW bias coefficients, using outputs from hydrodynamical N-body simulations to determine the bias fiducial model and considering future observations from the Vera Rubin Observatory and Einstein Telescope (ET), both single and in a 3 detector network configuration. We find that adding SN to the GW merger dataset considerably improves the forecast, mostly by breaking significant parameter degeneracies, with final constraints comparable to those obtainable from a Euclid-like survey. GW merger bias is forecasted to be detectable with good significance even in the single ET case.
AB - We study the clustering of Gravitational Wave (GW) merger events and Supernovae IA (SN), as cosmic tracers in Luminosity Distance Space. We modify the publicly available CAMB code to numerically evaluate auto- and cross- power spectra for the different sources, including Luminosity Distance Space distortion effects generated by peculiar velocities and lensing convergence. We perform a multitracer Fisher analysis to forecast expected constraints on cosmological and GW bias coefficients, using outputs from hydrodynamical N-body simulations to determine the bias fiducial model and considering future observations from the Vera Rubin Observatory and Einstein Telescope (ET), both single and in a 3 detector network configuration. We find that adding SN to the GW merger dataset considerably improves the forecast, mostly by breaking significant parameter degeneracies, with final constraints comparable to those obtainable from a Euclid-like survey. GW merger bias is forecasted to be detectable with good significance even in the single ET case.
KW - cosmological parameters from LSS
KW - gravitational waves / sources
KW - power spectrum
KW - supernova type Ia - standard candles
UR - http://www.scopus.com/inward/record.url?scp=85125446244&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2022/02/003
DO - 10.1088/1475-7516/2022/02/003
M3 - Article
AN - SCOPUS:85125446244
SN - 1475-7516
VL - 2022
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 2
M1 - 003
ER -