CMOS based gates for blurring power information

Moshe Avital, Itamar Levi, Osnat Keren, Alexander Fish

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Power analysis attacks have become one of the most significant security threats to modern cryptographic digital systems. In this paper, we introduce a new CMOS-based blurring gate (BG) which increases the immunity of a cryptographic system to these attacks. The BG switches randomly between two operational-modes, static and dynamic. When embedded in the crypto-core, the BGs enforce different and unpredictable arrival times (propagation delays) along the logic paths from inputs to outputs. This results in blurred power profiles and random propagation delays, which in turn mitigate power attacks. Simulation results and security analyses using system with embedded BG units with standard 65-nm technology, clearly show higher immunity to power analysis attacks over other standard-library based randomization technologies. The signal-to-noise ratio (SNR) decreases rapidly below 1 for a relatively small amount of BGs even with a large number of power traces in the worst case test environment.

Original languageEnglish
Article number7494672
Pages (from-to)1033-1042
Number of pages10
JournalIEEE Transactions on Circuits and Systems I: Regular Papers
Volume63
Issue number7
DOIs
StatePublished - 1 Jul 2016
Externally publishedYes

Keywords

  • Advanced encryption standard (AES)
  • CMOS based blurring gate (BG)
  • correlation power analysis (CPA)
  • differential power analysis (DPA)
  • hardware security
  • power analysis (PA)

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'CMOS based gates for blurring power information'. Together they form a unique fingerprint.

Cite this