Abstract
Autism spectrum disorder (ASD) is one of the most prevalent and highly heritable neurodevelopmental disorders in humans. There is significant evidence that the onset and severity of ASD is governed in part by complex genetic mechanisms affecting the normal development of the brain. To date, a number of genes have been associated with ASD. However, the temporal and spatial co-expression of these genes in the brain remain unclear. To address this issue, we examined the co-expression network of 26 autism genes from AutDB (http://mindspec.org/autdb.html), in the framework of 3,041 genes whose expression energies have the highest correlation between the coronal and sagittal images from the Allen Mouse Brain Atlas database (http://mouse.brain-map.org). These data were derived from in situ hybridization experiments conducted on male, 56-day old C57BL/6J mice co-registered to the Allen Reference Atlas, and were used to generate a normalized co-expression matrix indicating the cosine similarity between expression vectors of genes in this database. The network formed by the autism-associated genes showed a higher degree of co-expression connectivity than seen for the other genes in this dataset (Kolmogorov-Smirnov P = 5×10-28). Using Monte Carlo simulations, we identified two cliques of co-expressed genes that were significantly enriched with autism genes (A Bonferroni corrected P<0.05). Genes in both these cliques were significantly over-expressed in the cerebellar cortex (P = 1×10-5) suggesting possible implication of this brain region in autism. In conclusion, our study provides a detailed profiling of co-expression patterns of autism genes in the mouse brain, and suggests specific brain regions and new candidate genes that could be involved in autism etiology.
Original language | English |
---|---|
Article number | e1003128 |
Journal | PLoS Computational Biology |
Volume | 9 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jan 2013 |
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Modeling and Simulation
- Ecology
- Molecular Biology
- Genetics
- Cellular and Molecular Neuroscience
- Computational Theory and Mathematics