TY - JOUR
T1 - Colloid-facilitated transport of 238Pu, 233U and 137Cs through fractured chalk
T2 - Laboratory experiments, modelling, and implications for nuclear waste disposal
AU - Tran, Emily
AU - Zavrin, Mavrik
AU - Kersting, Annie B.
AU - Klein-BenDavid, Ofra
AU - Teutsch, Nadya
AU - Weisbrod, Noam
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/25
Y1 - 2021/2/25
N2 - The influence of montmorillonite colloids on the mobility of 238Pu, 233U and 137Cs through a chalk fracture was investigated to assess the transport potential for radioactive waste. Radioisotopes of each element, along with the conservative tracer tritium, were injected in the presence and absence of montmorillonite colloids into a naturally fractured chalk core. In parallel, batch experiments were conducted to obtain experimental sorption coefficients (Kd, mL/g) for both montmorillonite colloids and the chalk fracture material. Breakthrough curves were modelled to determine diffusivity and sorption of each radionuclide to the chalk and the colloids under advective conditions. Uranium sorbed sparingly to chalk (log Kd = 0.7 ± 0.2) in batch sorption experiments. 233U(VI) breakthrough was controlled primarily by the matrix diffusion and sorption to chalk (15 and 25% recovery with and without colloids, respectively). Cesium, in contrast, sorbed strongly to both the montmorillonite colloids and chalk (batch log Kd = 3.2 ± 0.01 and 3.9 ± 0.01, respectively). The high affinity to chalk and low colloid concentrations overwhelmed any colloidal Cs transport, resulting in very low 137Cs breakthrough (1.1–5.5% mass recovery). Batch and fracture transport results, and the associated modelling revealed that Pu migrates both as Pu (IV) sorbed to montmorillonite colloids and as dissolved Pu(V) (7% recovery). Transport experiments revealed differences in Pu(IV) and Pu(V) transport behavior that could not be quantified in simple batch experiments but are critical to effectively predict transport behavior of redox-sensitive radionuclides. Finally, a brackish groundwater solution was injected after completion of the fracture flow experiments and resulted in remobilization and recovery of 2.2% of the total sorbed radionuclides which remained in the core from previous experiments. In general, our study demonstrates consistency in sorption behavior between batch and advective fracture transport. The results suggest that colloid-facilitated radionuclide transport will enhance radionuclide migration in fractured chalk for those radionuclides with exceedingly high affinity for colloids.
AB - The influence of montmorillonite colloids on the mobility of 238Pu, 233U and 137Cs through a chalk fracture was investigated to assess the transport potential for radioactive waste. Radioisotopes of each element, along with the conservative tracer tritium, were injected in the presence and absence of montmorillonite colloids into a naturally fractured chalk core. In parallel, batch experiments were conducted to obtain experimental sorption coefficients (Kd, mL/g) for both montmorillonite colloids and the chalk fracture material. Breakthrough curves were modelled to determine diffusivity and sorption of each radionuclide to the chalk and the colloids under advective conditions. Uranium sorbed sparingly to chalk (log Kd = 0.7 ± 0.2) in batch sorption experiments. 233U(VI) breakthrough was controlled primarily by the matrix diffusion and sorption to chalk (15 and 25% recovery with and without colloids, respectively). Cesium, in contrast, sorbed strongly to both the montmorillonite colloids and chalk (batch log Kd = 3.2 ± 0.01 and 3.9 ± 0.01, respectively). The high affinity to chalk and low colloid concentrations overwhelmed any colloidal Cs transport, resulting in very low 137Cs breakthrough (1.1–5.5% mass recovery). Batch and fracture transport results, and the associated modelling revealed that Pu migrates both as Pu (IV) sorbed to montmorillonite colloids and as dissolved Pu(V) (7% recovery). Transport experiments revealed differences in Pu(IV) and Pu(V) transport behavior that could not be quantified in simple batch experiments but are critical to effectively predict transport behavior of redox-sensitive radionuclides. Finally, a brackish groundwater solution was injected after completion of the fracture flow experiments and resulted in remobilization and recovery of 2.2% of the total sorbed radionuclides which remained in the core from previous experiments. In general, our study demonstrates consistency in sorption behavior between batch and advective fracture transport. The results suggest that colloid-facilitated radionuclide transport will enhance radionuclide migration in fractured chalk for those radionuclides with exceedingly high affinity for colloids.
KW - Carbonate rocks
KW - Montmorillonite colloids
KW - Radionuclides
KW - Reactive transport
UR - http://www.scopus.com/inward/record.url?scp=85097106124&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.143818
DO - 10.1016/j.scitotenv.2020.143818
M3 - Article
C2 - 33246722
AN - SCOPUS:85097106124
SN - 0048-9697
VL - 757
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 143818
ER -