Combining diesel generators with ultracapacitors to enhance stability and reliability

M. Averbukh, A. Kuperman, G. Geula, S. Gadelovitch, V. Yuhimenko

Research output: Contribution to conferencePaperpeer-review


Diesel generator based auxiliary power units (DG-APU) are widely used in different civil and military applications. Fuel economy and service life are probably the most important issues concerning their operation. Controlling engine throttle position in accordance with the load power allows regulating fuel supply to the engine to optimize fuel consumption. Despite the advantage of the method, control stability is sacrificed in case of light load operation as follows. When the DG-APU is running with a light load, engine throttle position should be nearly closed in order to minimize fuel consumption. If a load step is applied in such situation, engine velocity may drop sharply until complete stop because of insufficient control system bandwidth. This is why velocity and throttle position of a DG-APU should not be decreased below some level even if load power is low to maintain reliability at the expense of increased specific fuel consumption. Moreover, for small diesel-generators the throttle position is usually fixed. Thereby, relatively wide range load power variations (typical for many of diesel-generator applications) cause excessive fuel consumption. The situation may be sufficiently improved by connecting ultracapacitors (UC) on the DG-APU output terminals, introducing additional inertia allowing smoothing engine velocity decrease during a sudden load increase thus providing more time to the control system to regulate throttle position. As a result, DG-APU would be operated much more efficiently at light loads without sacrificing stability. Moreover, the UC may be used at as starter motor power source, removing starting stress from electrochemical batteries. Present work investigates the improvements in UC-supported DG-APU fuel efficiency and stability compared to conventional technical solutions. The research is based on mathematical modeling of the entire system, verified by experiments. The results support the presented ideas and quantitatively demonstrate the improved fuel economy and reliability of small DG-APUs.

Original languageEnglish
StatePublished - 1 Jan 2014
Externally publishedYes
EventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada
Duration: 14 Nov 201420 Nov 2014


ConferenceASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014

ASJC Scopus subject areas

  • Mechanical Engineering


Dive into the research topics of 'Combining diesel generators with ultracapacitors to enhance stability and reliability'. Together they form a unique fingerprint.

Cite this