TY - JOUR
T1 - Communication-efficient distributed oblivious transfer
AU - Beimel, Amos
AU - Chee, Yeow Meng
AU - Wang, Huaxiong
AU - Zhang, Liang Feng
N1 - Funding Information:
E-mail addresses: [email protected] (A. Beimel), [email protected] (Y.M. Chee), [email protected] (H. Wang), [email protected] (L.F. Zhang). 1 Partially supported by Israel Science Foundation grant 938/09. 2 Partially supported by the Singapore National Research Foundation under Research Grant NRF-CRP2-2007-03.
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Distributed oblivious transfer (DOT) was introduced by Naor and Pinkas (2000) [31], and then generalized to (k,l)-DOT-(n1) by Blundo et al. (2007) [8] and Nikov et al. (2002) [34]. In the generalized setting, a (k,l)-DOT-(n1) allows a sender to communicate one of n secrets to a receiver with the help of l servers. Specifically, the transfer task of the sender is distributed among l servers and the receiver interacts with k out of the l servers in order to retrieve the secret he is interested in. The DOT protocols we consider in this work are information-theoretically secure. The known (k,l)-DOT-(n1) protocols require linear (in n) communication complexity between the receiver and servers. In this paper, we construct (k,l)-DOT-(n1) protocols which only require sublinear (in n) communication complexity between the receiver and servers. Our constructions are based on information-theoretic private information retrieval. In particular, we obtain both a specific reduction from (k,l)-DOT-(n1) to polynomial interpolation-based information-theoretic private information retrieval and a general reduction from (k,l)-DOT-(n1) to any information-theoretic private information retrieval. The specific reduction yields (t,τ)-private (k,l)-DOT-(n1) protocols of communication complexity O(n1/⌋(k-τ-1)/t⌊) between a semi-honest receiver and servers for any integers t and τ such that 1≤t≤k-1 and 0≤τ≤k-1-t. The general reduction yields (t,τ)-private (k,l)-DOT-(n1) protocols which are as communication-efficient as the underlying private information retrieval protocols for any integers t and τ such that 1≤t≤k-2 and 0≤τ≤k-1-t.
AB - Distributed oblivious transfer (DOT) was introduced by Naor and Pinkas (2000) [31], and then generalized to (k,l)-DOT-(n1) by Blundo et al. (2007) [8] and Nikov et al. (2002) [34]. In the generalized setting, a (k,l)-DOT-(n1) allows a sender to communicate one of n secrets to a receiver with the help of l servers. Specifically, the transfer task of the sender is distributed among l servers and the receiver interacts with k out of the l servers in order to retrieve the secret he is interested in. The DOT protocols we consider in this work are information-theoretically secure. The known (k,l)-DOT-(n1) protocols require linear (in n) communication complexity between the receiver and servers. In this paper, we construct (k,l)-DOT-(n1) protocols which only require sublinear (in n) communication complexity between the receiver and servers. Our constructions are based on information-theoretic private information retrieval. In particular, we obtain both a specific reduction from (k,l)-DOT-(n1) to polynomial interpolation-based information-theoretic private information retrieval and a general reduction from (k,l)-DOT-(n1) to any information-theoretic private information retrieval. The specific reduction yields (t,τ)-private (k,l)-DOT-(n1) protocols of communication complexity O(n1/⌋(k-τ-1)/t⌊) between a semi-honest receiver and servers for any integers t and τ such that 1≤t≤k-1 and 0≤τ≤k-1-t. The general reduction yields (t,τ)-private (k,l)-DOT-(n1) protocols which are as communication-efficient as the underlying private information retrieval protocols for any integers t and τ such that 1≤t≤k-2 and 0≤τ≤k-1-t.
KW - Communication complexity
KW - Distributed oblivious transfer
KW - Private information retrieval
UR - http://www.scopus.com/inward/record.url?scp=84862812796&partnerID=8YFLogxK
U2 - 10.1016/j.jcss.2012.02.002
DO - 10.1016/j.jcss.2012.02.002
M3 - Article
AN - SCOPUS:84862812796
SN - 0022-0000
VL - 78
SP - 1142
EP - 1157
JO - Journal of Computer and System Sciences
JF - Journal of Computer and System Sciences
IS - 4
ER -