Communication in the presence of replication

Omer Barkol, Yuval Ishai, Enav Weinreb

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

We consider the following problem. Suppose that a big amount of data is distributed among several parties, so that each party misses only few pieces of data. The parties wish to perform some global computation on the data while minimizing the communication between them. This situation is common in many real-life scenarios. A naive solution to this problem is to first perform a synchronization step, letting one party learn all pieces of data, and then let this party perform the required computation locally. We study the question of obtaining better solutions to the problem, focusing mainly on the case of computing low-degree polynomials via non-interactive protocols. We present interesting connections between this problem and the well studied cryptographic problem of secret sharing. We use this connection to obtain nontrivial upper bounds and lower bounds using results and techniques from the domain of secret sharing. The relation with open problems from the area of secret sharing also provides evidence for the difficulty of resolving some of the questions we leave open.

Original languageEnglish
Title of host publicationSTOC'08
Subtitle of host publicationProceedings of the 2008 ACM Symposium on Theory of Computing
PublisherAssociation for Computing Machinery (ACM)
Pages661-669
Number of pages9
ISBN (Print)9781605580470
DOIs
StatePublished - 1 Jan 2008
Externally publishedYes
Event40th Annual ACM Symposium on Theory of Computing, STOC 2008 - Victoria, BC, Canada
Duration: 17 May 200820 May 2008

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference40th Annual ACM Symposium on Theory of Computing, STOC 2008
Country/TerritoryCanada
CityVictoria, BC
Period17/05/0820/05/08

Keywords

  • Communication complexity
  • Secret sharing
  • Simultaneous messages

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Communication in the presence of replication'. Together they form a unique fingerprint.

Cite this