TY - JOUR
T1 - Comparing Plan Recognition Algorithms Through Standard Plan Libraries.
AU - Mirsky, Reuth
AU - Galun, Ran
AU - Gal, Kobi
AU - Kaminka, Gal A.
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2021
Y1 - 2021
N2 - Plan recognition deals with reasoning about the goals and execution process of an actor, given observations of its actions. It is one of the fundamental problems of AI, applicable to many domains, from user interfaces to cyber-security. Despite the prevalence of these approaches, they lack a standard representation, and have not been compared using a common testbed. This paper provides a first step towards bridging this gap by providing a standard plan library representation that can be used by hierarchical, discrete-space plan recognition and evaluation criteria to consider when comparing plan recognition algorithms. This representation is comprehensive enough to describe a variety of known plan recognition problems and can be easily used by existing algorithms in this class. We use this common representation to thoroughly compare two known approaches, represented by two algorithms, SBR and Probabilistic Hostile Agent Task Tracker (PHATT). We provide meaningful insights about the differences and abilities of these algorithms, and evaluate these insights both theoretically and empirically. We show a tradeoff between expressiveness and efficiency: SBR is usually superior to PHATT in terms of computation time and space, but at the expense of functionality and representational compactness. We also show how different properties of the plan library affect the complexity of the recognition process, regardless of the concrete algorithm used. Lastly, we show how these insights can be used to form a new algorithm that outperforms existing approaches both in terms of expressiveness and efficiency.
AB - Plan recognition deals with reasoning about the goals and execution process of an actor, given observations of its actions. It is one of the fundamental problems of AI, applicable to many domains, from user interfaces to cyber-security. Despite the prevalence of these approaches, they lack a standard representation, and have not been compared using a common testbed. This paper provides a first step towards bridging this gap by providing a standard plan library representation that can be used by hierarchical, discrete-space plan recognition and evaluation criteria to consider when comparing plan recognition algorithms. This representation is comprehensive enough to describe a variety of known plan recognition problems and can be easily used by existing algorithms in this class. We use this common representation to thoroughly compare two known approaches, represented by two algorithms, SBR and Probabilistic Hostile Agent Task Tracker (PHATT). We provide meaningful insights about the differences and abilities of these algorithms, and evaluate these insights both theoretically and empirically. We show a tradeoff between expressiveness and efficiency: SBR is usually superior to PHATT in terms of computation time and space, but at the expense of functionality and representational compactness. We also show how different properties of the plan library affect the complexity of the recognition process, regardless of the concrete algorithm used. Lastly, we show how these insights can be used to form a new algorithm that outperforms existing approaches both in terms of expressiveness and efficiency.
KW - artificial intelligence
KW - plan libraries
KW - plan recognition
KW - standardization
KW - theory of mind
UR - http://www.scopus.com/inward/record.url?scp=85123219275&partnerID=8YFLogxK
U2 - 10.3389/frai.2021.732177
DO - 10.3389/frai.2021.732177
M3 - Article
C2 - 35072058
SN - 2624-8212
VL - 4
SP - 732177
JO - Frontiers in Artificial Intelligence
JF - Frontiers in Artificial Intelligence
M1 - 732177
ER -